精英家教网 > 高中数学 > 题目详情

【题目】高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;

(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.

【答案】10. 016;(2

【解析】试题分析:(1)根据频率等于频数除以总数,可得到参加校生物竞赛的人数,再根据分数在[80,90)之间的频率求频数,根据矩形高等于对应频率除以组距得高(2)先根据枚举法列出所有基本事件,再计数至少有1人分数在[90,100]之间基本试卷数,最后根据古典概型概率公式求概率

试题解析: (1)因为分数在[50,60)之间的频数为2,频率为0. 008×100. 08,所以高一(1)班参加校生物竞赛的人数为25

分数在[80,90)之间的频数为25271024,频率为0. 16

所以频率分布直方图中[80,90)间的矩形的高为0. 016

(2)至少有1人分数在[90,100]之间为事件A,将[80,90)之间的4人编号为1234[90,100]之间的2人编号为56

[80,100]之间任取2人的基本事件有:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,

根据古典概型概率的计算公式,得P(A)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且满足,数列中,,对任意正整数.

1)求数列的通项公式;

2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比q的值,若不存在,请说明理由;

3)求数列n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑。若三棱锥P-ABC为鳖臑,PA⊥面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个顶点都在球的球面上,则球0的表面积为( )

A. 8πB. 12πC. 20πD. 24π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,若,则称的“收缩数列”.其中分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列的“收缩数列”.

(1)若,求的前项和;

(2)证明:的“收缩数列”仍是

(3)若,求所有满足该条件的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若曲线在点处的切线方程是,不等式的解集为非空集合,其中为自然对数的底数.

(Ⅰ)求的解析式,并用表示

(Ⅱ)若任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;

(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)经过两点.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点,椭圆上一点满足,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长为1的正方体ABCDA1B1C1D1中,EFM分别是线段ABADAA1的中点,又PQ分别在线段A1B1A1D1上,且A1PA1Qx(0<x<1).设平面MEF∩平面MPQ

l,现有下列结论:

l∥平面ABCD

lAC

③直线l与平面BCC1B1不垂直;

④当x变化时,l不是定直线.

其中不成立的结论是________.(写出所有不成立结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.

(1)若点的坐标为,求椭圆的方程及的值;

(2)若,求椭圆的离心率的取值范围.

查看答案和解析>>

同步练习册答案