精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),当且仅当x=1,x=-1时,f(x)取得极值,并且极大值比极小值大c.
(1)求常数a,b,c的值;
(2)求f(x)的极值.
(1)因为f'(x)=3x2+2ax+b;
∵当x=-1和x=1时,f(x)取得极值,
∴f′(-1)=0,f′(1)=0,
3-2a+b=0
3+2a+b=0
a=0
b=-3

∴f′(x)=3(x2-1)=3(x+1)(x-1).
∴当x>1或x<-1时,f′(x)>0;原函数递增;
当-1<x<1时,f′(x)<0函数递减.
∴函数极大值为:f(-1)=-1-b+c,极小值为:f(1)=1+b+c
∴(-1-b+c)-(1+b+c)=c⇒c=4.
(2)∵f(x)=x3-3x+4.
∴函数极大值为f(-1)=6;极小值为:f(1)=2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln(1+x2)+ax(a≤0).
(1)若f(x)在x=0处取得极值,求a的值;
(2)讨论f(x)的单调性;
(3)证明:(1+
1
4
)(1+
1
16
)…(1+
1
4n
)<e1-
1
2n
(n∈N*,e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x-1,
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若直线y=m与y=f(x)的图象有三个不同的交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x.
(1)求曲线y=f(x)在点M(2,2)处的切线方程;
(2)求函数f(x)的单调区间;
(3)求函数f(x)的极值(要列出表格).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=xekx(k≠0).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)当k>0时,求函数f(x)的单调区间;
(3)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2
(x-1)2+lnx-ax+a

(Ⅰ)若a=
3
2
,求函数f(x)的极值;
(Ⅱ)若对任意的x∈(1,3),都有f(x)>0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线y=
1
3
x3在x=x0处的切线L经过点P(2,
8
3
),求切线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线y=x3+x-2在点P0处的切线l1平行直线4x-y-1=0,且点P0在第三象限,
(1)求P0的坐标;
(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=1nx-
1
2
ax2
-2x
(1)若函数f(x)在x=2处取得极值,求实数a的值;
(2)若函数f(x)在定义域内单调递增,求a的取值范围;
(3)若a=-
1
2
时,关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

同步练习册答案