精英家教网 > 高中数学 > 题目详情
3.已知关于x的不等式$|{x-1}|-|{2x-1}|>{log_{\frac{1}{3}}}a$(其中a>0).
(1)当a=3时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围.

分析 (1)通过讨论x的范围得到关于x的不等式组,解出即可;(2)求出f(x)的最大值,得到关于a的不等式组,解出即可.

解答 解:(1)a=3时,|x-1|-|2x-1|>-1,
∴$\left\{\begin{array}{l}{x≥1}\\{(x-1)-(2x-1)>-1}\end{array}\right.$或$\left\{\begin{array}{l}{x≤\frac{1}{2}}\\{1-x-(1-2x)>-1}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{2}<x<1}\\{1-x-(2x-1)>-1}\end{array}\right.$,
解得:-1<x<1,
故不等式的解集是(-1,1);
(2)f(x)=$\left\{\begin{array}{l}{-x,x≥1}\\{2-3x,\frac{1}{2}<x<1}\\{x,x≤\frac{1}{2}}\end{array}\right.$,
∴f(x)∈(-∞,$\frac{1}{2}$],
∴f(x)的最大值是$\frac{1}{2}$,
∵不等式有解,
∴$\frac{1}{2}$>${log}_{\frac{1}{3}}$a,解得:a>$\frac{\sqrt{3}}{3}$.

点评 本题考查了解绝对值不等式问题,考查分段函数有以及对数的运算,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知关于x的方程为x2+x+n2=0,若n∈[-1,1],则方程有实数根的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,复数$z=i+\frac{2}{1-i}$,则复数$\overline z$的虚部是(  )
A.$-\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.
(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;
(2)求抽取的编号能使方程a+b+2c=6成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.关于实数x,y的不等式组$\left\{\begin{array}{l}x≤4\\ y≥2\\ x-y+2≥0\end{array}\right.$所表示的平面区域记为M,不等式(x-4)2+(y-3)2≤1所表示的区域记为N,若在M内随机取一点,则该点取自N的概率为(  )
A.$\frac{π}{16}$B.$\frac{π}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知异面直线a与b所成角为60°,过空间内一定点P且与直线a、b所成角均为60°的直线有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆方程2x2+3y2=1,则它的长轴长是(  )
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x||x|≤2},B={x|x2-2x-3≤0},则A∩B=(  )
A.[-1,2]B.[-2,3]C.[-2,1]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都等于2,且两两夹角为60°,则对角线BD1的长度为(  )
A.$2\sqrt{2}$B.$\sqrt{2}$C.$2\sqrt{6}$D.$\frac{{\sqrt{3}}}{2}+2$

查看答案和解析>>

同步练习册答案