精英家教网 > 高中数学 > 题目详情

(14分) 如图,椭圆 的右准线lx轴于点M,AB为过焦点F的弦,且直线AB的倾斜角.

(Ⅰ)当的面积最大时,求直线AB的方程.

(Ⅱ)()试用表示;

()若,求直线AB的方程.

解析:(Ⅰ)设AB:x=my+2,  A(x1,y1) ,B(x2,y2)

     将x=my+2代入,消x整理,得:

     (m2+2)y2+4my-4=0

    而=

     ==

 取“=”时,显然m=0,此时AB:x=2……………………6分

 

 


(Ⅱ)()显然是椭圆的右焦点,离心率

         且

         作  点A在椭圆上

       

        

      ……………10分

 ()同理 ,由

有  =2 

解得:=,故

 所以直线AB: y=(x-2)

即直线AB的方程为………14分

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(14分)如图,在直角梯形中,,椭圆以为焦点且经过点

(Ⅰ)建立适当的直角坐标系,求椭圆的方程;

(Ⅱ)若点满足,问是否存在直线与椭圆交于两点,且?若存在,求出直线 夹角的正切值的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届福建省高二上学期期中考试理科数学试卷(解析版) 题型:解答题

(本小题满分14分)如图,椭圆的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为

(Ⅰ)求椭圆的方程.

(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三2月月考理科数学 题型:解答题

(本题满分14分)如图,已知为椭圆的右焦点,直线过点且与双曲线的两条渐进线分别交于点,与椭圆交于点.

 

 

(I)若,双曲线的焦距为4。求椭圆方程。

(II)若为坐标原点),,求椭圆的离心率

 

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广州市七区联考高二数学(文)下学期期末监测 题型:解答题

(本大题满分14分)

如图,已知直线L:过椭圆C:的右焦点F,

且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E.

(Ⅰ)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;

(Ⅱ)若为x轴上一点;

求证: A、N、E三点共线.

 

 

 

 

 

查看答案和解析>>

同步练习册答案