精英家教网 > 高中数学 > 题目详情
已知F1(-c,0),F2(c,0)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,过点F1作倾斜角为θ的动直线l交椭圆于A,B两点.当θ=
π
4
时,
AF1
=(2-
3
)
F1B
,且|AB|=3.
(1)求椭圆的离心率及椭圆的标准方程;
(2)求△ABF2面积的最大值,并求出使面积达到最大值时直线l的方程.
分析:(1)根据题意设出l的为方程x=y-c,联立
x=y-c
x2
a2
+
y2
b2
=1
得:(a2+b2)y2-2b2cy-b4=0,设A(x1,y1),B(x2,y2),则y1+y2=
2b2c
a2+b2
①,y1y2=
-b4
a2+b2
②,又由
AF1
=(2-
3
)
F1B
y1
y2
=-(2-
3
)
③,由①②③⇒
(y1+y2)2
y1y2
=
y1
y2
+
y2
y1
+2=
-4c2
a2+b2
=-2
⇒2a2=3c2e=
6
3
,结合|AB|=
2
|y1-y2|
=
2
×
4b4c2+4b4(a2+b2)
a2+b2
=
4ab2
a2+b2
=a=3
,可求得椭圆的方程;

(2)设直线l的方程为x=my-
6
,由
x=my-
6
x2
9
+
y2
3
=1
,消去x得,(m2+3)y2-2
6
my-3=0
,由韦达定理得:|y1-y2|=
6
m2+1
m2+3
,又S△ABF2=
1
2
×2c×|y1-y2|=
6
×
6
m2+1
m2+3
=
6
6
m2+1
+
2
m2+1
6
6
2
2
=3
3
,(当且仅当
m2+1
=
2
m2+1
时取等号),从而可求得m,问题解决.
解答:解:(1)∵直线l的倾斜角θ=
π
4
,过点F1(-c,0),故l的为方程为:x=y-c,
x=y-c
x2
a2
+
y2
b2
=1
,消去x得,(a2+b2)y2-2b2cy-b4=0,
设A(x1,y1),B(x2,y2),则y1+y2=
2b2c
a2+b2
①,y1y2=
-b4
a2+b2
②,
又由
AF1
=(2-
3
)
F1B
y1
y2
=-(2-
3
)
③,
由①②③得
(y1+y2)2
y1y2
=
y1
y2
+
y2
y1
+2=
-4c2
a2+b2
=-2

∴a2+b2=2c2=2(a2-b2),
∴a2=3b2=3(a2-c2),
∴2a2=3c2
e=
6
3

|AB|=
2
|y1-y2|
=
2
×
4b4c2+4b4(a2+b2)
a2+b2
=
4ab2
a2+b2
=
4a•(
1
3
a2
a2+
1
3
a2
=a=3,
∴b2=3,
∴椭圆标准方程为
x2
9
+
y2
3
=1

(2)设直线l的方程为x=my-
6
,由
x=my-
6
x2
9
+
y2
3
=1
,消去x得,(m2+3)y2-2
6
my-3=0

|y1-y2|=
24m2+12(m2+3)
m2+3
=
6
m2+1
m2+3

S△ABF2=
1
2
×2c×|y1-y2|=
6
×
6
m2+1
m2+3
=
6
6
m2+1
+
2
m2+1
6
6
2
2
=3
3
,(当且仅当
m2+1
=
2
m2+1
,即m=±1时取“=”),
∴m=±1时,使△ABF2面积达到最大值,此时直线l的方程为y=±(x+
6
)
点评:本题考查直线与圆锥曲线的综合问题,难点在于(1)中①②③的联立求得
-4c2
a2+b2
=-2,着重考查方程思想,韦达定理的使用与弦长公式的应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-c,0),F2(c,0)为椭圆
x2
a2
+
y2
b2
=1
的两个焦点,P为椭圆上一点且
PF1
PF2
=c2
,则此椭圆离心率的取值范围是(  )
A、[
3
3
,1)
B、[
1
3
1
2
]
C、[
3
3
2
2
]
D、(0,
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-c,0),F2(c,0)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,过点F1作倾斜角为60° 的直线l交椭圆于A,B两点,ABF2的内切圆的半径为
2
3
7
c
(I)求椭圆的离心率;   
(II)若|AB|=8
2
,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)已知F1(-c,0),F2(c,0)分别是双曲线C1
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,双曲线C1和圆C2:x2+y2=c2的一个交点为P,且2∠PF1F2=∠PF2F1,那么双曲线C1的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-c,0),F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是(x-
5
4
c)2+y2=
9c2
16

(1)若P是圆M上的任意一点,求证:
|PF1|
|PF2|
是定值;
(2)若椭圆经过圆上一点Q,且cos∠F1QF2=
3
5
,求椭圆的离心率;
(3)在(2)的条件下,若|OQ|=
34
2
,求椭圆的方程.

查看答案和解析>>

同步练习册答案