分析 直接利用累乘法,求解即可.
解答 解:数列{an}满足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$,a1=2,
可知:an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$…$\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n-1}{n}•\frac{n-2}{n-1}•\frac{n-3}{n-2}…$$\frac{1}{2}•2$=$\frac{1}{n}$.
故答案为:$\frac{1}{n}$.
点评 本题考查数列的通项,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com