分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数即可求得m值.
解答 解:由约束条件$\left\{\begin{array}{l}{y≥x}\\{x+3y≤4}\\{x≥m}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=m}\\{y=x}\end{array}\right.$,解得A(m,m),
化目标函数z=x-3y为y=$\frac{x}{3}-\frac{z}{3}$,
由图可知,当直线y=$\frac{x}{3}-\frac{z}{3}$过A时,直线在y轴上的截距最小,z有最大值.
此时z=m-3m=-2m=8,即m=-4.
故答案为:-4.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-3≤x≤1} | B. | {x|x≥3或x≤-1} | C. | {x|-1≤x≤3} | D. | {x|x≤-3或x≥1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小值16 | B. | 最小值$\frac{1}{16}$ | C. | 最大值16 | D. | 最大值$\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 255 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a甲(b)>a乙(b),S甲(b)>S乙(b) | B. | a甲(b)<a乙(b),S甲(b)<S乙(b) | ||
| C. | a甲(b)<a乙(b),S甲(b)>S乙(b) | D. | a甲(b)<a乙(b),S甲(b)<S乙(b) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com