分析 求出数列的等比与首项,化简a1a2…an,然后求解最值.
解答 解:等比数列{an}满足a1+a3=10,a2+a4=5,
可得q(a1+a3)=5,解得q=$\frac{1}{2}$.
a1+q2a1=10,解得a1=8.
则a1a2…an=a1n•q1+2+3+…+(n-1)=8n•($\frac{1}{2}$)${\;}^{\frac{n(n+1)}{2}}$=2${\;}^{3n-\frac{{n}^{2}-n}{2}}$=2${\;}^{\frac{7n-{n}^{2}}{2}}$,
当n=3或4时,Mn的最大值=2${\;}^{\frac{12}{2}}$=64.
故答案是:64.
点评 本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$,$\frac{1}{6}$ | B. | $\frac{1}{2}$,$\frac{2}{3}$ | C. | $\frac{1}{6}$,$\frac{2}{3}$ | D. | $\frac{2}{3}$,$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?a∈R,函数f(x)和g(x)都是奇函数 | B. | ?a∈R,函数f(x)和g(x)都是奇函数 | ||
| C. | ?a∈R,函数f(x)和g(x)都是偶函数 | D. | ?a∈R,函数f(x)和g(x)都是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 医生人数 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
| 概率 | 0.1 | 0.16 | 0.2 | x | 0.2 | 0.04 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-5)∪(5,+∞) | B. | (-5,-2)∪(2,5) | C. | (-∞,-5)∪(-2,0) | D. | (-∞,-5)∪(-2,0)∪(2,5) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com