精英家教网 > 高中数学 > 题目详情
12.正方体ABCD-A1B1C1D1中,AB=2,点E为AD1的中点,点F在AB上.若EF⊥平面AB1C,则线段EF的长度等于$\sqrt{3}$.

分析 如图所示,由正方体的性质可得:AO⊥平面BDD1.可得AC⊥BD1,可得BD1⊥平面ACB1.由EF⊥平面AB1C,可得EF∥BD1,可得EF为△ABD1的中位线,即可得出.

解答 解:如图所示.
由正方体的性质可得:AO⊥平面BDD1
∴AC⊥BD1
同理可得BD1⊥AB1,又AC∩AB1=A,
∴BD1⊥平面ACB1
又EF⊥平面AB1C,
∴EF∥BD1,又点E为AD1的中点,
∴点F为AB的中点,
而$B{D}_{1}=\sqrt{3}$AB,
∴EF=$\frac{1}{2}B{D}_{1}$=$\frac{1}{2}$×$2\sqrt{3}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了正方体的性质、线面垂直的判定与性质定理、三角形中位线定理,考查了推理能力与计算能力,属于中点题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数y=loga($\frac{x-3}{x+3}$)(a>0,且a≠1)的定义域为[s,t),值域为(logaa(t-1),logaa(s-1)],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知(x2+1)(x-2)9=a0+a1(x-1)+a2(x-1)2+…+a11(x-1)11,则a1+a2+…+a11的值为(  )
A.0B.2C.255D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲、乙速度v与时间t的关系如图,a(b)是t=b时的加速度,S(b)是从t=0到t=b的路程,则a(b)与a(b),S(b)与S(b)的大小关系是(  )
A.a(b)>a(b),S(b)>S(b)B.a(b)<a(b),S(b)<S(b)
C.a(b)<a(b),S(b)>S(b)D.a(b)<a(b),S(b)<S(b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若变量x,y满足$\left\{{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}}\right.$则z=(x+1)2+y2的最大值是(  )
A.12B.10C.17D.26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设等比数列{an}满足a1+a3=10,a2+a4=5,记Mn=2a1a2…an,求Mn的最大值=64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半.问何日相逢,各穿几何?题意是:有两只老鼠从墙的两边打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则S5=(  )
A.$31\frac{15}{16}$B.$32\frac{15}{16}$C.$33\frac{15}{16}$D.$26\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设不等式4x-m(4x+2x+1)≥0对于任意的x∈[0,1]恒成立,则实数m的取值范围是(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在救灾现场,搜救人员从A点出发沿正北方向行进x米到达B处,探测到一个生命迹象,然后从B处沿南偏东75°行进30米到达C处,探测到另一个生命迹象,如果C处恰好在A处的北偏东60°方向上,那么x=10$\sqrt{6}$.米.

查看答案和解析>>

同步练习册答案