精英家教网 > 高中数学 > 题目详情
9.如图所示,为一个几何体的主视图与左视图,则此几何体的体积为(  )
A.36B.48C.64D.72

分析 由题意可知该几何体是个柱体,底面是梯形,上底边长为3,下底边长为5,高为4,柱体的高为4,利用柱体的体积公式,可得结论.

解答 解:由题意可知该几何体是个柱体,底面是梯形,上底边长为3,下底边长为5,高为4,柱体的高为4,利用柱体的体积公式V=$\frac{3+5}{2}×4×4$=64.
故选C.

点评 本题考查由三视图求体积,考查由三视图还原直观图,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.将一枚骰子连续抛掷两次,得到向上的点数第一次为m,第二次为n.
(Ⅰ) 求m+n=6的概率;
(Ⅱ)求方程x2+mx+n=0有两个不相等实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为:ρsin(θ+$\frac{π}{4}}$)=1.直线l与曲线C相交于点A,B.
(1)求直线l的直角坐标方程;
(2)求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线Γ:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆x2+y2-$\frac{2c}{3}$y+$\frac{{a}^{2}}{9}$=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为(  )
A.4x±y=0B.x±4y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|x-$\frac{1}{x}$=0,x∈R},则满足A∪B={-1,0,1}的集合B的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0.求证:
(1)f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)若f(3)=1,试解不等式f(x)+f(x-8)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\frac{1}{sinα}$+$\frac{1}{cosα}$=$\sqrt{3}$,则sinαcosα=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$或1D.$\frac{1}{3}$或-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{1+lo{g}_{a}(x+1),x≥0}\end{array}\right.$(a>0且a≠1),g(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+4ax.若同时满足条件:①f(x)在R上单调递减;②g(x)在(2,+∞)上存在单调递增区间,则实数a的取值范围是($\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,x),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值是(  )
A.-4B.-1C.1D.4

查看答案和解析>>

同步练习册答案