| A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$或1 | D. | $\frac{1}{3}$或-1 |
分析 由已知得$sinα+cosα=\sqrt{3}sinαcosα$,两边同时平方,能求出sinαcosα的值.
解答 解:∵$\frac{1}{sinα}$+$\frac{1}{cosα}$=$\sqrt{3}$,
∴$\frac{sinα+cosα}{sinαcosα}$=$\sqrt{3}$,
∴$sinα+cosα=\sqrt{3}sinαcosα$,
两边同时平方,得:1+2sinαcosα=3sin2αcos2α,
解得sinαcosα=1或sinαcosα=-$\frac{1}{3}$,
当sinαcosα=1时,(sinα+cosα)2=1+2sinαcosα=2sin2($α+\frac{π}{4}$)=3,不成立,
∴sinαcosα=-$\frac{1}{3}$.
故选:A.
点评 本题考查三角函数值的求法,是中档题,解题时要认真审题,注意三角函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com