精英家教网 > 高中数学 > 题目详情
(2013•黑龙江二模)已知数列{an}的前n项和Sn=2n+1-2(n∈N*
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=anlog2an(n∈N*),求数列{bn}的前n项和Tn
分析:(Ⅰ)利用数列递推式,再写一式,两式相减,即可求数列{an}的通项公式an
(Ⅱ)确定数列{bn}的通项,利用错位相减法,即可求前n项和Tn
解答:解:(Ⅰ)∵Sn=2n+1-2,
∴n≥2时,Sn-1=2n-2,
两式相减,可得an=(2n+1-2)-(2n-2)=2n
∵n=1时,a1=S1=2
∴an=2n
(Ⅱ)由(Ⅰ)得bn=anlog2an=n•2n
∴Tn=1•2+2•22+3•23+4•24+…+n•2n,①
∴2Tn=1•22+2•23+3•24+4•25+…+n•2n+1
②-①,得Tn=-2-22-23-24-25-…-2n+n•2n+1=(n-1)•2n+1+2
点评:本题考查数列递推式,考查数列的通项与求和,考查错位相减法的运用,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黑龙江二模)某几何体的三视图 (单位:cm) 如图所示,则此几何体的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)求“方程(
3
5
x+(
4
5
x=1的解”有如下解题思路:设f(x)=(
3
5
x+(
4
5
x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x6+x2=(x+2)3+(x+2)的解集为
{-1,2}
{-1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)如图,在四棱锥P-ABCD中,侧棱PA丄底面ABCD底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.
(I)若F为PE的中点,求证BF∥平面ACE;
(Ⅱ)求三棱锥P-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)已知函数f(x)=lnx,x1,x2∈(0,
1
e
),且x1<x2,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)复平面内,表示复故
1+i
2-i
(其中i为虚数单位)的点位于(  )

查看答案和解析>>

同步练习册答案