精英家教网 > 高中数学 > 题目详情
9.某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项等于前两项的和)的前10项的和,他设计了一个程序框图,那么在空白矩形框和判断框内应分别填入的语句是(  )
A.c=a;i≤9B.b=c;i≤9C.c=a;i≤10D.b=c;i≤10

分析 由斐波那契数列从第三项起每一项等于前两项的和,由程序框图从而判断空白矩形框内应为:b=c,模拟执行程序框图,当第8次循环时,i=10,由题意不满足条件,退出执行循环,输出S的值,即可得判断框内应为i≤9.

解答 解:由题意,斐波那契数列0,1,1,2,…,从第三项起每一项等于前两项的和,分别用a,b来表示前两项,c表示第三项,S为数列前n项和,
故空白矩形框内应为:b=c,
第1次循环:a=0,b=1,S=0+4=1,i=3,求出第3项c=1,求出前3项和S=0+1+1=2,a=1,b=1,满足条件,i=4,执行循环;
第2次循环:求出第4项c=1+1=2,求出前4项和S=0+1+1+2=4,a=1,b=2,满足条件,i=5,执行循环;

第8次循环:求出第10项c,求出前10项和S,此时i=10,由题意不满足条件,退出执行循环,输出S的值.
故判断框内应为i≤9.
故选:B.

点评 本题考查的知识点是程序框图解决实际问题,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},}&{x≤0}\\{lo{g}_{2}}&{x,x>0}\end{array}\right.$,若对任意给定的t∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=2at2+at,则正实数a的最小值是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知某班学生语文与数学的学业水平测试成绩抽样统计如下表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示语文成绩与数学成绩,例如:表中语文成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.
x语文
人数
y数学
ABC
A7205
B9186
Ca4b
(Ⅰ)求抽取的学生人数;
(Ⅱ)设该样本中,语文成绩优秀率是30%,求a,b的值;
(Ⅲ)已知a≥10,b≥8,求语文成绩为A等级的总人数比语文成绩为C等级的总人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知函数f(x)=|x-1|+|x+3|,求x的取值范围,使f(x)为常函数;
(2)若x,y,z∈R,x2+y2+z2=1,求m=$\sqrt{2}$x+$\sqrt{2}$y+$\sqrt{5}$z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列,则2sinA-sinC的取值范围为$(-\frac{\sqrt{3}}{2},\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足an+an+1=(-1)${\;}^{\frac{n(n+1)}{2}}$n,Sn是其前n项和,若S2015=-1007-b,且a1b>0,则$\frac{1}{{a}_{1}}$+$\frac{2}{b}$的最小值为$3+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足${a_n}+{a_{n+1}}={(-1)^{\frac{n(n+1)}{2}}}$n,Sn是其前n项和,若S2015=-1007,则a1=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)设函数$f(x)=|\frac{1}{2}x+1|+|x|(x∈R)$,求f(x)的最小值,
(2)当a+2b+3c=m(a,b,c∈R)时,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z=1+i(i是虚数单位),则$\frac{2}{z}$=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

同步练习册答案