分析 (1)写出分段函数$\left\{\begin{array}{l}{-\frac{3}{2}x-1,x<-2}\\{-\frac{1}{2}x+1,-2≤x≤0}\\{\frac{3}{2}x+1,x>0}\end{array}\right.$,确定函数的单调性,可得函数f(x)的最小值;
(2)由柯西不等式(a2+b2+c2)(12+22+32)≥(a+2b+3c)2=1,可得a2+b2+c2的最小值.
解答 解:(1)f(x)=$\left\{\begin{array}{l}{-\frac{3}{2}x-1,x<-2}\\{-\frac{1}{2}x+1,-2≤x≤0}\\{\frac{3}{2}x+1,x>0}\end{array}\right.$,
当x∈(-∞,0]时,f(x)单调递减,
当x∈[0,+∞)时,f(x)单调递增,
所以当x=0时,f(x)的最小值m=1. …(5分)
(2)由柯西不等式(a2+b2+c2)(12+22+32)≥(a+2b+c)2=1,
故a2+b2+c2≥$\frac{1}{14}$,当且仅当a=$\frac{1}{14}$,b=$\frac{1}{7}$,c-$\frac{3}{14}$时取等号
∴a2+b2+c2的最小值为$\frac{1}{14}$.…(10分)
点评 本题考查绝对值不等式的解法,考查二维形式的柯西不等式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c=a;i≤9 | B. | b=c;i≤9 | C. | c=a;i≤10 | D. | b=c;i≤10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{113π}{16}$ | B. | $\frac{113π}{48}$ | C. | $\frac{113π}{64}$ | D. | $\frac{377π}{64}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com