【题目】如图,三棱柱
中,
,
,
平面
.
![]()
(1)求证:
;
(2)若
,直线
与平面
所成的角为
,求二面角
的余弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)首先由
平面
证得
,根据四边形
是菱形证得
,由此证得
平面
,进而证得
.
(2)首先根据“直线
与平面
所成的角为
”得到
.以
为坐标原点建立空间直角坐标系,通过平面
的法向量和平面
的法向量,计算出二面角
的余弦值.
(1)证明:因为
平面
,所以
,
因为
,所以四边形
是菱形,所以
,
因为
,所以
平面
,
所以
.
(2)因为
与平面
所成的角为
,
,
所以
与平面
所成的角为
,
因为
平面
,
所以
与平面
所成的角为
,
所以
,
令
,则
,
,
,
以
为坐标原点,分别以
,
,
为
,
,
轴建立如图空间直角坐标系,
则
,
,
,
,
,
因为![]()
,
所以
,平面
的一个法向量为
,
设平面
的一个法向量为
,
则
,即
,
令
,则
,
,
,
所以
,
所以二面角
的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出
的普通方程及
的直角坐标方程;
(2)设点
在
上,点
在
上,求
的最小值及此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.由2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.若图中勾股形的勾股比为
,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:
,
)
![]()
A.2B.4C.6D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C:
(
),称圆心在原点O,半径为
的圆是椭圆C的“卫星圆”.若椭圆C的离心率
,点
在C上.
(1)求椭圆C的方程和其“卫星圆”方程;
(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线
,
使得![]()
![]()
,与椭圆C都只有一个交点,且
,
分别交其“卫星圆”于点M,N,证明:弦长
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值;
(Ⅲ)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已如椭圆E:
(
)的离心率为
,点
在E上.
(1)求E的方程:
(2)斜率不为0的直线l经过点
,且与E交于P,Q两点,试问:是否存在定点C,使得
?若存在,求C的坐标:若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com