精英家教网 > 高中数学 > 题目详情
5.如图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2016}{a}_{2017}}$=(  )
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2016}$D.$\frac{2016}{2015}$

分析 根据题意,可得a2=3=3×(2-1),a3=6=3×(3-1),a4=9=3×(4-1),a5=12=3×(5-1)…an=3(n-1),数列{an}是首项为3,公差为3的等差数列,通项为an=3(n-1)(n≥2);所以$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{3(n-1)•3n}$=$\frac{1}{9}$($\frac{1}{n-1}$-$\frac{1}{n}$),再由数列的求和方法:裂项相消求和,即可得到所求和.

解答 解:根据分析,可得
a2=3=3×(2-1),a3=6=3×(3-1),a4=9=3×(4-1),
a5=12=3×(5-1)…,an=3(n-1),
数列{an}是首项为3,公差为3的等差数列,通项为an=3(n-1)(n≥2);
所以$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{3(n-1)•3n}$=$\frac{1}{9}$($\frac{1}{n-1}$-$\frac{1}{n}$),
则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2016}{a}_{2017}}$=9×$\frac{1}{9}$×(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$)
=1-$\frac{1}{2016}$=$\frac{2015}{2016}$.
故选:C.

点评 本题主要考查了图形的变化规律,数列的求和方法:裂项相消求和,解答此题的关键是根据已知的图形中点数的变化推得an=3(n-1)(n≥2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设复数 Z1,Z2 在复平面内对应的点关于虚轴对称,Z1=2+i,则 Z2=(  )
A.2-iB.-2-iC.-2+iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x+sinπx,则f(${\frac{1}{2017}}$)+f(${\frac{2}{2017}}$)+f(${\frac{3}{2017}}$)+…+f(${\frac{4033}{2017}}$)的值为4033.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为C,过点F的直线与抛物线相交于A、B两点,若|AF|=3,|BF|=1,则AC的长度为(  )
A.$\sqrt{19}$B.2$\sqrt{5}$C.$\frac{3}{2}$$\sqrt{7}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log2(x-m),其中m∈R.
(1)若函数f(x)在区间(2,3)内有一个零点,求m的取值范围;
(2)若函数f(x)在区间[1,t](t>1)上的最大值与最小值之差为2,且f(t)>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1-x)(2+x)5的展开式中x3的系数为(  )
A.-40B.40C.-15D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{{x}^{2}-3x+2,x≥0}\end{array}\right.$,函数g(x)=f(x)-a恰有三个不同的零点,则实数a的取值范围为(  )
A.(-∞,-$\frac{1}{4}$]B.(-$\frac{1}{4}$,2)C.[2,+∞)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$•$\overrightarrow{b}$|=(  )
A.2B.$\sqrt{2}$C.1D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.两条平行直线3x+4y=0与3x+4y-5=0的距离为1.

查看答案和解析>>

同步练习册答案