精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数f(x)=(m2﹣5m+7)xm1(m∈R)为偶函数.
(1)求 的值;
(2)若f(2a+1)=f(a),求实数a的值.

【答案】
(1)解:由m2﹣5m+7=1得m=2或3,…2

当m=2时,f(x)=x3是奇函数,∴不满足.

当m=3时,∴f(x)=x4,满足题意,…4

∴函数f(x)的解析式f(x)=x4,所以


(2)解:由f(x)=x4和f(2a+1)=f(a)可得|2a+1|=|a|,…8

即2a+1=a或2a+1=﹣a,∴a=﹣1或


【解析】(1)根据幂函数的系数一定为1可先确定参数m的值,再根据奇偶性进行验证,可得答案.(2)由(1)知f(x)=x4 , 利用函数的单调性及f(2a+1)=f(a)可得|2a+1|=|a|,从而求出a的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x+1|<1},B={x|y= ,y∈R},则A∩RB=(
A.(﹣2,1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线的焦点均在轴上, 的中心和的顶点均为原点,从每条曲线上各取两个点,其坐标分别是

(1)求 的标准方程;

(2)是否存在直线满足条件:①过的焦点;②与交于不同的两点且满足?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中不正确的是( )

A. 的图象关于点中心对称

B. 的图象关于直线对称

C. 的最大值为

D. 既是奇函数,又是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x>1},集合B={x|m≤x≤m+3};
(1)当m=﹣1时,求A∩B,A∪B;
(2)若BA,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 时,讨论函数在区间上零点的个数;

(2)当时,如果函数恰有两个不同的极值点 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= (x2﹣9)的单调递增区间为(
A.(0,+∞)
B.(﹣∞,0)
C.(3,+∞)
D.(﹣∞,﹣3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)满足:对任意x1x2∈R,当且仅当x1=x2时,有f(x1)=f(x2).则f(﹣1)+f(0)+f(1)的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义在R上的奇函数,且 为偶函数,对于函数y=f(x)有下列几种描述,其中描述正确的是( ) ①y=f(x)是周期函数;②x=π是它的一条对称轴
③(﹣π,0)是它图象的一个对称中心;④当 时,它一定取最大值

A.①②
B.①③
C.②④
D.②③

查看答案和解析>>

同步练习册答案