精英家教网 > 高中数学 > 题目详情
已知a>0,b>0,若不等式mab≤(3a+b)(b+3a)恒成立,则m的最大值等于(  )
A、12B、9C、6D、3
考点:基本不等式
专题:不等式的解法及应用
分析:由题意可得m≤
(3a+b)(b+3a)
ab
=
6ab+9a2+b2
ab
,利用基本不等式求得
6ab+9a2+b2
ab
的最小值,可得m的最大值.
解答: 解:由题意可得m≤
(3a+b)(b+3a)
ab
=
6ab+9a2+b2
ab
6ab+2
9a2•b2
ab
=12,
当且仅当9a2=b2,即b=3a时等号成立,
故m的最大值等于12,
故选:A.
点评:本题主要考查基本不等式的应用,函数的恒成立问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE; 
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
.求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[x1,x2]的函数y=f(x)的图象的两个端点为A(x1,y1),B(x2,y2).M(x,y)是f(x)图象上任意一点,其中x=λx1+(1-λ)x2,(λ∈R),且
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k恒成立,则称函数f(x)在[x1,x2]上“k阶线性近似”.若函数y=
x
与y=
3x
在[0,1]上有且仅有一个“k阶线性近似”,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,输出结果s的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足:①f(1)=1,②?x∈R,f(x+5)≥f(x)+5,f(x+1)≤f(x)+1,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∠BAC在平面α内,PA是α的斜线,若∠PAB=∠PAC=∠BAC=60°,PA=a,则点P到平面α的距离为(  )
A、
3
3
a
B、
3
2
a
C、
6
3
a
D、
6
2
a

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)y=sin3x+cos2x-sinx的最大值(  )
A、
28
27
B、
32
27
C、
4
3
D、
40
27

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入的p=0.8,则输出的n为(  )
A、4B、5C、6D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且满足
m
n
=0.
(Ⅰ)将y表示为x的函数f(x),并写出f(x)的对称轴及对称中心;
(Ⅱ)已知a,b,c分别为△ABC的三个内角A、B、C对应的边长,若f(x)≤f(
A
2
)对所有x∈R恒成立,且a=4,求b+c的取值范围.

查看答案和解析>>

同步练习册答案