精英家教网 > 高中数学 > 题目详情
18.$\int\begin{array}{l}2\\ 1\end{array}$($\frac{1}{x}$-$\frac{1}{x^2}$)dx=ln2-$\frac{1}{2}$.

分析 求出被积函数的原函数,然后分别代入积分上限和下限作差得答案.

解答 解:$\int\begin{array}{l}2\\ 1\end{array}$($\frac{1}{x}$-$\frac{1}{x^2}$)dx=$(lnx+\frac{1}{x}){|}_{1}^{2}$=$(ln2+\frac{1}{2})-(ln1+1)=ln2-\frac{1}{2}$.
故答案为:$ln2-\frac{1}{2}$.

点评 本题考查定积分,关键是求出被积函数的原函数,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知盒中有4个红球,4个黄球,4个白球,且每种颜色的四个球均按A,B,C,D编号.现从中摸出4个球(除颜色与编号外球没有区别).
(Ⅰ)求恰好包含字母A,B,C,D的概率;
(Ⅱ)设摸出的4个球中出现的颜色种数为X,求随机变量X的分布列和期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若正实数a、b满足log8a+log4b2=5,log8b+log4a2=5,则log4a+log8b2=$\frac{35}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≤0}\\{y≥0}\end{array}\right.$,则z=-4x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“k=-1”是“直线l:y=kx+2k-1在坐标轴上截距相等”的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=cosx的图象与直线x=$\frac{π}{2}$,x=$\frac{3π}{2}$以及x轴所围成的图形的面积为a,则(x-$\frac{a}{x}}$)(2x-$\frac{1}{x}}$)5的展开式中的常数项为-200(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.
平均车速超过
100km/h人数
平均车速不超过
100km/h人数
合计
男性驾驶员人数401555
女性驾驶员人数202545
合计6040100
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.
参考公式与数据:Χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(Χ2≥k00.1500.1000.0500.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将他们的体重数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(Ⅰ)求该校报考体育专业学生的总人数n;
(Ⅱ)已知A,B,C,a是该校报考体育专业的4名学生,A,B,C的体重小于55千克,a的体重不小于70千克.且A,B各有5分体育加分,C,a各有10分体育加分.其他学生无体育加分,从体重小于55 千克的学生中抽取2人,从体重不小于70千克的学生中抽取1人,组成3人训练组,训练组中3人的体育总加分记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分别为CC1和A1B1的中点,且A1A=AC=2AB=2.
(1)求证:C1E∥平面A1BD;
(2)求三棱锥C1-A1BD的体积.

查看答案和解析>>

同步练习册答案