精英家教网 > 高中数学 > 题目详情
14.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分别为CC1和A1B1的中点,且A1A=AC=2AB=2.
(1)求证:C1E∥平面A1BD;
(2)求三棱锥C1-A1BD的体积.

分析 (1)取A1B的中点F,连结EF,FD.则可证明四边形EFDC1是平行四边形,故而C1E∥DF,得出结论;
(2)证出A1B1⊥平面AA1C1C,则V${\;}_{{C}_{1}-{A}_{1}BD}$=V${\;}_{B-{A}_{1}{C}_{1}D}$=V${\;}_{{B}_{1}-{A}_{1}{C}_{1}D}$=$\frac{1}{3}{S}_{△{A}_{1}{C}_{1}D}•{A}_{1}{B}_{1}$.

解答 证明:(1)取A1B的中点F,连结EF,FD.
∵E,F是A1B1,A1B的中点,
∴EF$\stackrel{∥}{=}$$\frac{1}{2}$BB1
又BB1$\stackrel{∥}{=}$CC1,D是CC1的中点,
∴EF$\stackrel{∥}{=}$C1D,
∴四边形EFDC1是平行四边形,
∴C1E∥DF,又DF?平面A1BD,C1E?平面A1BD,
∴C1E∥平面A1BD.
解:(2)∵AA1⊥平面A1B1C1,A1B1?平面A1B1C1
∴AA1⊥A1B1
∵∠B1A1C1=90°,
∴A1B1⊥A1C1
又AA1?平面AA1C1C,A1C1?平面AA1C1C,AA1∩A1C1=A1
∴A1B1⊥平面AA1C1C,
∵AA1∥BB1
∴V${\;}_{{C}_{1}-{A}_{1}BD}$=V${\;}_{B-{A}_{1}{C}_{1}D}$=V${\;}_{{B}_{1}-{A}_{1}{C}_{1}D}$=$\frac{1}{3}{S}_{△{A}_{1}{C}_{1}D}•{A}_{1}{B}_{1}$=$\frac{1}{3}×\frac{1}{2}×2×1×1$=$\frac{1}{3}$.

点评 本题考查了线面平行的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.$\int\begin{array}{l}2\\ 1\end{array}$($\frac{1}{x}$-$\frac{1}{x^2}$)dx=ln2-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在边长为4cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为B,构成一个三棱锥
(1)求点B到面AEF的距离
(2)求几何体B-AEF的表面积;
(3)求直线BE与面MNE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(文)如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求证:AC⊥平面BDEF.
(2)求证:FC∥平面EAD.
(3)设AD=1,求VE-BCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.
(1)求三棱锥A1-BCD的体积
(2)求证:BD⊥平面A1AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C过点P(1,4),Q(3,2),且圆心C在直线x+y-3=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l:kx-y-2k+1=0与圆C交于A,B两点,当|AB|最小时,求直线l的方程及|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
  男 女 总计
 爱好 40 20 60
 不爱好 20 30 50
 总计 60 50 110
由${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算得:${K^2}=\frac{{110×{{(40×30-20×20)}^2}}}{60×50×60×50}≈7.8$
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”
C.有99.9%以上的把握认为“爱好该项运动与性别有关”
D.有99.9%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线x=4y2的焦点坐标为(  )
A.($\frac{1}{16}$,0)B.(0,$\frac{1}{16}$)C.($\frac{1}{2}$,0)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b∈R+,且a≥b
求证:b≤$\sqrt{\frac{2}{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}}}$≤$\frac{2}{\frac{1}{a}+\frac{1}{b}}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$≤a.

查看答案和解析>>

同步练习册答案