精英家教网 > 高中数学 > 题目详情
9.如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.
(1)求三棱锥A1-BCD的体积
(2)求证:BD⊥平面A1AC.

分析 (1)以BCD为棱锥的底面,则AA1为棱锥的高,代入棱锥的体积公式计算即可;
(2)连结AC,由底面正方形可知BD⊥AC,由AA1⊥平面ABCD可知AA1⊥BD,故而BD⊥平面A1AC.

解答 解:(1)在长方体ABCD-A1B1C1D1中,
∵A1A⊥平面ABCD,
即A1A是三棱锥A1-BCD的高,
∵AA1=BB1=2,AB=BC=1,∴${S_{△BCD}}=\frac{1}{2}BC×CD=\frac{1}{2}$.
∴${V_{三棱锥{A_1}-BCD}}=\frac{1}{3}{S_{△BCD}}×{A_1}A=\frac{1}{3}×\frac{1}{2}×2=\frac{1}{3}$.
证明:(2)连结AC,
∵A1A⊥平面ABCD,BD?平面ABCD,
∴A1A⊥BD.
又AB=BC,
∴矩形ABCD是正方形,
∴BD⊥AC,
∵AC?平面A1AC,A1A?平面A1AC,A1A∩AC=A,
∴BD⊥平面A1AC.

点评 本题考查了长方体的结构特征,线面垂直的判定,棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.“k=-1”是“直线l:y=kx+2k-1在坐标轴上截距相等”的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a>0,b>0.若关于x,y的方程组$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$无解,则a+b的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD,
(1)证明:平面AEC⊥平面BED;
(2)若∠ABC=120°,AE⊥EC,S△EAC=3,令AE与平面ABCD所成角为θ,且sinθ=$\frac{{\sqrt{3}}}{3}$,求该四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在边长为10(单位:m)的正方形铁皮的四周切去四个全等的等腰三角形,再把它的四个角沿着虚线折起,做成一个正四棱锥的模型.设切去的等腰三角形的高为x m.问正四棱锥的体积V(x)何时最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分别为CC1和A1B1的中点,且A1A=AC=2AB=2.
(1)求证:C1E∥平面A1BD;
(2)求三棱锥C1-A1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y2=8x,点Q是圆C:x2+y2+2x-8y+13=0上任意一点,记抛物线上任意一点到直线x=-2的距离为d,则|PQ|+d的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线方程为y2=4x,直线l的方程为x-y+2=0,在抛物线上有一动点P到y轴的距离为d1,P到l的距离为d2,则d1+d2的最小值为(  )
A.$2\sqrt{3}-2$B.$\frac{3\sqrt{2}}{2}$-1C.2$\sqrt{2}$D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设M为直线x-y-1=0上的动点,过M作抛物线y=x2的切线,切点分别为A,B.
(1)求证:直线AB过定点.
(2)求△ABM面积S的最小值,并求此时取得最小值时M的坐标.

查看答案和解析>>

同步练习册答案