精英家教网 > 高中数学 > 题目详情
18.已知抛物线方程为y2=4x,直线l的方程为x-y+2=0,在抛物线上有一动点P到y轴的距离为d1,P到l的距离为d2,则d1+d2的最小值为(  )
A.$2\sqrt{3}-2$B.$\frac{3\sqrt{2}}{2}$-1C.2$\sqrt{2}$D.2$\sqrt{2}$+2

分析 点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x-y+2=0的垂线,此时d1+d2最小,根据抛物线方程求得F,进而利用点到直线的距离公式求得d1+d2的最小值.

解答 解:如图,过点P作PA⊥l于点A,作PB⊥y轴于点B,PB的延长线交准线x=-1于点C,
连接PF,根据抛物线的定义得PA+PC=PA+PF,
∵P到y轴的距离为d1,P到直线l的距离为d2
∴d1+d2=PA+PB=(PA+PC)-1=(PA+PF)-1,
根据平面几何知识,可得当P、A、F三点共线时,PA+PF有最小值,
∵F(1,0)到直线l:x-y+2=0的距离为$\frac{3}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$
∴PA+PF的最小值是$\frac{3\sqrt{2}}{2}$,
由此可得d1+d2的最小值为$\frac{3\sqrt{2}}{2}$-1
故选:B.

点评 本题主要考查了抛物线的简单性质,点到直线距离公式的应用,正确运用抛物线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知圆C的圆心是直线$\left\{\begin{array}{l}x=t\\ y=1+2t.\end{array}\right.$(t为参数)与y轴的交点,且圆C与直线x+y-3=0相切,则圆C的方程为x2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.
(1)求三棱锥A1-BCD的体积
(2)求证:BD⊥平面A1AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
  男 女 总计
 爱好 40 20 60
 不爱好 20 30 50
 总计 60 50 110
由${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算得:${K^2}=\frac{{110×{{(40×30-20×20)}^2}}}{60×50×60×50}≈7.8$
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”
C.有99.9%以上的把握认为“爱好该项运动与性别有关”
D.有99.9%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直线l与抛物线y2=4x交于A,B两点,且OA⊥OB,其中O为坐标原点.
(1)直线l是否过定点?证明你的结论;
(2)若$|{AB}|=4\sqrt{10}$,求△AOB的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线x=4y2的焦点坐标为(  )
A.($\frac{1}{16}$,0)B.(0,$\frac{1}{16}$)C.($\frac{1}{2}$,0)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a≥b≥c>0,证明:$\frac{{a}^{3}}{bc}$+$\frac{{b}^{3}}{ca}$+$\frac{{c}^{3}}{ab}$≥$\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}+{c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线x2=2py(p>0)的焦点到准线的距离为2,则直线y=x+1截抛物线所得的弦长等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆Σ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,且经过点$P(2,\sqrt{2})$.
(Ⅰ)求椭圆Σ的方程;
(Ⅱ)A、B是椭圆Σ上两点,线段AB的垂直平分线l经过M(0,1),求△OAB面积的最大值(O为坐标原点).

查看答案和解析>>

同步练习册答案