分析 a≥b≥c>0可得a-b≥0,b-c≥0,a-c≥0,a3-b3≥0,b3-c3≥0,a3-c3≥0,运用作差比较法,化简整理,分解因式即可得到证明.
解答 证明:a≥b≥c>0可得a-b≥0,b-c≥0,a-c≥0,
由$\frac{{a}^{3}}{bc}$+$\frac{{b}^{3}}{ca}$+$\frac{{c}^{3}}{ab}$-($\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}+{c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$)
=$\frac{2{a}^{4}+2{b}^{4}+2{c}^{4}}{2abc}$-$\frac{ab({a}^{2}+{b}^{2})}{2abc}$-$\frac{bc({b}^{2}+{c}^{2})}{2abc}$-$\frac{ac({a}^{2}+{c}^{2})}{2abc}$
=$\frac{1}{2abc}$[(a4+b4-a3b-ab3)+(b4+c4-b3c-bc3)+(c4+a4-ac3-a3c)]
=$\frac{1}{2abc}$[(a-b)(a3-b3)+(b-c)(b3-c3)+a-c)(a3-c3)]
由a-b≥0,b-c≥0,a-c≥0,可得a3-b3≥0,b3-c3≥0,a3-c3≥0,
即有$\frac{{a}^{3}}{bc}$+$\frac{{b}^{3}}{ca}$+$\frac{{c}^{3}}{ab}$≥$\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}+{c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$.
点评 本题考查不等式的证明,注意运用作差比较法,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}-2$ | B. | $\frac{3\sqrt{2}}{2}$-1 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{2}$+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16π}{15}$ | B. | $\frac{64π}{15}$ | C. | $\frac{15π}{4}$ | D. | $\frac{15π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com