精英家教网 > 高中数学 > 题目详情
5.如图,已知直线l与抛物线y2=2x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,若y1y2=-4,
(1)求:M点的坐标;
(2)求证:OA⊥OB;
(3)求△AOB的面积的最小值.

分析 (1)设M点的坐标为(t,0),直线l方程为x=my+t,代入y2=x得y2-2my-2t=0,利用韦达定理可证得M点的坐标为(2,0).
(2)根据y1y2=-4结合向量的坐标运算得出OA⊥OB.
(3)S△AOB=$\frac{1}{2}$|OM||y1-y2|=$\frac{1}{2}\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}$=$\sqrt{{m^2}+4}$≥2.由此能求出结果.

解答 (1)解:设M点的坐标为(t,0),直线l方程为x=my+t,
代入y2=2x得y2-2my-2t=0,①
y1、y2是此方程的两根,
∴y1y2=-2t=-4,∴t=2,即M点的坐标为(2,0);…(4分)
(2)证明:∵y1y2=-4,
∴x1x2+y1y2=$\frac{1}{4}$y12y22+y1y2=0,
∴OA⊥OB; …(8分)
(3)解:由方程①,y1+y2=2m,y1y2=-4,且|OM|=t=2,
于是S△AOB=$\frac{1}{2}$|OM||y1-y2|=$\frac{1}{2}\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}$×2=2$\sqrt{{m^2}+4}$≥4,
∴当m=0时,△AOB的面积取最小值4.  …(12分)

点评 本题考查抛物线的简单性质,考查三角形面积的最小值的求法,解题时要认真审题,仔细解答,注意抛物线性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列说法中正确的是(  )
①设随机变量X服从二项分布B(6,$\frac{1}{2}$),则P(X=3)=$\frac{5}{16}$
②已知随机变量X服从正态分布N(2,σ2)且P(X<4)=0.9,则P(0<X<2)=0.4
③$\int_{-1}^0$${\sqrt{1-{x^2}}$dx}=$\int_0^1$${\sqrt{1-{x^2}}$dx=$\frac{π}{4}$
④E(2X+3)=2E(X)+3;D(2X+3)=2D(X)+3.
A.①②③B.②③④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:y2=2px(p>0)上的一点M的横坐标为3,焦点为F,且|MF|=4.直线l:y=2x-4与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l1∥l,且直线l1与抛物线C相切于点P,求直线l1的方程及△ABP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直线l与抛物线y2=4x交于A,B两点,且OA⊥OB,其中O为坐标原点.
(1)直线l是否过定点?证明你的结论;
(2)若$|{AB}|=4\sqrt{10}$,求△AOB的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a≥b≥c>0,证明:$\frac{{a}^{3}}{bc}$+$\frac{{b}^{3}}{ca}$+$\frac{{c}^{3}}{ab}$≥$\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}+{c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)构造函数证明不等式的性质,若a>b>0,则$\frac{1}{a}<\frac{1}{b}$.
(2)求证:x>2时,x3-6x2+12x-1>7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x>y>0,求证:x+$\frac{1}{y}$>y+$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知抛物线y2=2px(p>0)的准线与x轴的交点为Q,过点Q的直线与抛物线相切于点P,F是抛物线的焦点,若△PQF的面积为8,则P的值为4.

查看答案和解析>>

同步练习册答案