分析 由题意,Q(-$\frac{p}{2}$,0),F($\frac{p}{2}$,0),设P(a,b),利用△PQF的面积为8,求出P的坐标,求出抛物线在P的切线方程,Q(-$\frac{p}{2}$,0),代入可得0-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(-$\frac{p}{2}$-$\frac{128}{{p}^{3}}$),解方程,可得p的值.
解答 解:由题意,Q(-$\frac{p}{2}$,0),F($\frac{p}{2}$,0),设P(a,b),
∵△PQF的面积为8,
∴$\frac{1}{2}×p×|b|$=8,
∴|b|=$\frac{16}{p}$,∴a=$\frac{128}{{p}^{3}}$,
取P($\frac{128}{{p}^{3}}$,$\frac{16}{p}$),则抛物线在P的切线方程为y-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(x-$\frac{128}{{p}^{3}}$),
Q(-$\frac{p}{2}$,0),代入可得0-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(-$\frac{p}{2}$-$\frac{128}{{p}^{3}}$),
∴p=4.
故答案为:4.
点评 本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查抛物线的切线方程,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{2}{3}$$\sqrt{3}$ | D. | $\frac{3}{2}$$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5\sqrt{2}}{6}$ | B. | 3$\sqrt{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com