精英家教网 > 高中数学 > 题目详情
4.在直角坐标系xOy中,抛物线C:y2=4x的焦点为F,准线为l,点P是准线上任一点,直线PF交抛物线于A,B两点,若$\overrightarrow{FP}$=4$\overrightarrow{FA}$,则S△AOB=(  )
A.$\frac{5\sqrt{2}}{6}$B.3$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{9}{2}$

分析 先求出直线PF的方程,代入抛物线方程,利用韦达定理,结合三角形的面积公式,即可得出结论.

解答 解:不妨设B在x轴上方,直线PF的倾斜角为α,
∵$\overrightarrow{FP}$=4$\overrightarrow{FA}$,
∴由抛物线的定义,可得cosθ=$\frac{1}{3}$,
∴tanθ=2$\sqrt{2}$
∵抛物线C:y2=4x的焦点为F(1,0),
∴直线PF的方程为y=2$\sqrt{2}$(x-1),即x=$\frac{\sqrt{2}}{4}$y+1,
代入y2=4x,可得y2-$\sqrt{2}$y-4=0,
设A(x1,y1),B(x2,y2),则y1+y2=$\sqrt{2}$,y1y2=-4,
∴|y1-y2|=$\sqrt{2+16}$=3$\sqrt{2}$,
∴S△AOB=$\frac{1}{2}×1×3\sqrt{2}$=$\frac{3\sqrt{2}}{2}$.
故选:C.

点评 本题考查抛物线的性质,考查三角形面积的计算,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知x>y>0,求证:x+$\frac{1}{y}$>y+$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知抛物线y2=2px(p>0)的准线与x轴的交点为Q,过点Q的直线与抛物线相切于点P,F是抛物线的焦点,若△PQF的面积为8,则P的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,点A(x1,y1),B(x2,y2),C(x3,y3)(y1>0,y2<0,y3<0)是抛物线y2=2px(p>0)上不同三点,AB,AC分别与x轴交于点E、F,BF与OC,EC分别交于M,N,则(  )
A.S△OBM=S△ENF+S△MNCB.S△OBM=S△ENF-S△MNC
C.S△OBM+S△ENF=S△MNCD.S△OBM+S△ENF=2S△MNC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=2$\sqrt{2-x}$+$\sqrt{2x-3}$的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求抛物线x2=y上到直线y=2x-4的距离最小的点的坐标,并求出这个距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为(0,10),五个级别规定如下:
交通指数(0,2)[2,4)[4,6)[6,8)[8,10)
级别畅通基本畅通轻度拥堵中度拥堵严重拥堵
某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示.
(Ⅰ)据此估计此人260个工作日中早高峰时段(早晨7点至9点)中度拥堵的天数;
(Ⅱ)若此人早晨上班路上所用时间近似为:畅通时30分钟,基本畅通时35分钟,轻度拥堵时40分钟,中度拥堵时50分钟,严重拥堵时70分钟,以直方图中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a>1,n∈N且n≥2,求证:$\root{n}{a}$-1<$\frac{a-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足0<an<1,且an+1+$\frac{1}{{a}_{n+1}}$=2an+$\frac{1}{{a}_{n}}$(n∈N*).
(1)证明:an+1<an
(2)若a1=$\frac{1}{2}$,设数列{an}的前n项和为Sn,证明:$\sqrt{2n+4}$-$\frac{5}{2}$<Sn<$\sqrt{3n+4}$-2.

查看答案和解析>>

同步练习册答案