精英家教网 > 高中数学 > 题目详情
14.设a>0,b>0.若关于x,y的方程组$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$无解,则a+b的取值范围是(2,+∞).

分析 根据方程组无解可知两直线平行,利用斜率得出a,b的关系,再使用基本不等式得出答案.

解答 解:∵关于x,y的方程组$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$无解,
∴直线ax+y-1=0与直线x+by-1=0平行,
∴-a=-$\frac{1}{b}$,且$\frac{1}{b}≠1$.
即a=$\frac{1}{b}$且b≠1.
∵a>0,b>0.∴a+b=b+$\frac{1}{b}$>2.
故答案为:(2,+∞).

点评 本题考查了直线平行与斜率的关系,基本不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知△ABC的面积为3$\sqrt{6}$,若动点P满足$\overrightarrow{AP}$=2λ$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),则点P的轨迹与直线AB,AC所围成封闭区域的面积是(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数i+$\frac{2}{1-i}$(i为虚数单位)的实部为(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆C的圆心是直线$\left\{\begin{array}{l}x=t\\ y=1+2t.\end{array}\right.$(t为参数)与y轴的交点,且圆C与直线x+y-3=0相切,则圆C的方程为x2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法中正确的是(  )
①设随机变量X服从二项分布B(6,$\frac{1}{2}$),则P(X=3)=$\frac{5}{16}$
②已知随机变量X服从正态分布N(2,σ2)且P(X<4)=0.9,则P(0<X<2)=0.4
③$\int_{-1}^0$${\sqrt{1-{x^2}}$dx}=$\int_0^1$${\sqrt{1-{x^2}}$dx=$\frac{π}{4}$
④E(2X+3)=2E(X)+3;D(2X+3)=2D(X)+3.
A.①②③B.②③④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在边长为4cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为B,构成一个三棱锥
(1)求点B到面AEF的距离
(2)求几何体B-AEF的表面积;
(3)求直线BE与面MNE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图(1)所示,已知矩形ABCD,AB=2AD=2a,E是CD边的中点,以AE为棱,将△DAE向上折起,将D 折到D′的位置,使平面D′AE与平面ABCE成直二面角如图(2)所示.
(1)求直线D′B与平面ABCE所成的角的正切值;
(2)求四棱锥D′-ABCE的体积;
(3)求异面直线AD′与BC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.
(1)求三棱锥A1-BCD的体积
(2)求证:BD⊥平面A1AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a≥b≥c>0,证明:$\frac{{a}^{3}}{bc}$+$\frac{{b}^{3}}{ca}$+$\frac{{c}^{3}}{ab}$≥$\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}+{c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$.

查看答案和解析>>

同步练习册答案