精英家教网 > 高中数学 > 题目详情
19.已知圆C过点P(1,4),Q(3,2),且圆心C在直线x+y-3=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l:kx-y-2k+1=0与圆C交于A,B两点,当|AB|最小时,求直线l的方程及|AB|的最小值.

分析 (Ⅰ)设圆的标准方程,利用待定系数法求解即可;
(Ⅱ)直线转化为点斜式,得出过定点M(2,1),显然点M在圆内,利用数形结合可知当直线L与CM垂直时,弦|AB|最小,求解即可.

解答 解:(Ⅰ)设圆的方程为(x-a)2+(y-b)2=r2
∴a+b-3=0,
(1-a)2+(4-b)2=r2
解得:a=1,b=2,r=2,
∴圆的方程为(x-1)2+(y-2)2=4,
(Ⅱ)直线L的方程可化为y-1=k(x-2),
∴过定点M(2,1),显然点M在圆内,
∴当直线L与CM垂直时,弦|AB|最小,
∵kcm=-1,
∴k=1,
∴L的方程为x-y-1=0.
∵|CM|=$\sqrt{2}$,r=2,
∴|AB|=2$\sqrt{2}$.

点评 考查了圆方程的求解和数形结合的应用,难点是对直线方程横过圆内定点的理解和应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数y=cosx的图象与直线x=$\frac{π}{2}$,x=$\frac{3π}{2}$以及x轴所围成的图形的面积为a,则(x-$\frac{a}{x}}$)(2x-$\frac{1}{x}}$)5的展开式中的常数项为-200(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O、M分别为AB、VA的中点;
(1)求证:OC⊥VB;
(2)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CC1=AB=AC=2,∠BAC=90°,D为BC的中点.
(Ⅰ)(图2)给出了该三棱柱三视图中的正视图,请据此在框内对应位置画出它的侧视图;
(Ⅱ)求证:A1C∥平面AB1D;
(Ⅲ)若点P是线段A1C上的动点,求三棱锥P-AB1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分别为CC1和A1B1的中点,且A1A=AC=2AB=2.
(1)求证:C1E∥平面A1BD;
(2)求三棱锥C1-A1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求证:$已知:a>0,求证:\sqrt{a+5}-\sqrt{a+3}>\sqrt{a+6}-\sqrt{a+4}$
(2)已知:△ABC的三条边分别为a,b,c.求证:$\frac{a+b}{1+a+b}>\frac{c}{1+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.抛物线$y=-\frac{1}{4}{x^2}$的准线方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证不等式:xlnx>-x2+2x-1-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知a,b,c>0,求证:$\frac{{a}^{2}}{b}+\frac{{b}^{2}}{c}+\frac{{c}^{2}}{a}$≥a+b+c;
(2)已知a>0,b>0,a+b=1,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}≥8$.

查看答案和解析>>

同步练习册答案