精英家教网 > 高中数学 > 题目详情
8.求证不等式:xlnx>-x2+2x-1-$\frac{1}{e}$.

分析 构造函数f(x)=xlnx,求出导数和单调区间,可得极小值,且为最小值;g(x)=-x2+2x-1-$\frac{1}{e}$,配方求得最大值,比较即可得证,注意等号不成立.

解答 证明:由函数f(x)=xlnx,可得导数为
f′(x)=lnx+1,由f′(x)=0,可得x=$\frac{1}{e}$,
当x>$\frac{1}{e}$时,f′(x)>0,f(x)递增;
当0<x<$\frac{1}{e}$时,f′(x)<0,f(x)递减.
可得f(x)在x=$\frac{1}{e}$处取得极小值,且为最小值-$\frac{1}{e}$;
又g(x)=-x2+2x-1-$\frac{1}{e}$=-(x-1)2-$\frac{1}{e}$,
当x=1时,函数g(x)取得最大值-$\frac{1}{e}$.
由于最值的取得,不同时成立,
则xlnx>-x2+2x-1-$\frac{1}{e}$成立.

点评 本题考查不等式的证明,注意运用构造函数法,求得最值,比较最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知离心率为2的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O是坐标原点.若△AOB的面积为$\sqrt{3}$,则抛物线的方程为(  )
A.y2=2xB.y2=3xC.y2=4xD.y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C过点P(1,4),Q(3,2),且圆心C在直线x+y-3=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l:kx-y-2k+1=0与圆C交于A,B两点,当|AB|最小时,求直线l的方程及|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知P是抛物线y2=4x上的一个动点,则点P到直线l1:3x-4y+12=0和l2:x+2=0的距离之和的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线x=4y2的焦点坐标为(  )
A.($\frac{1}{16}$,0)B.(0,$\frac{1}{16}$)C.($\frac{1}{2}$,0)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AAl=2,∠ABC=120°,点P在线段AC1上,且AP=2PCl,M为线段AC的中点.
(I)证明:BM∥平面B1CP;
(Ⅱ)求直线AB1与平面B1CP所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥ABCD-A1B1C1D1中,侧棱AA1⊥平面ABCD,底面ABCD为菱形,∠ABC=120°,AB=AA1=2,AC∩BD=O,E、F分别是线段A1D、BC1的中点,延长D1A1到点G,使得D1A1=AG.
(1)证明:GB∥平面DEF;
(2)求直线GD与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与抛物线y2=4x的准线的一个交点的纵坐标为y0,若|y0|<2,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.(1,$\sqrt{5}$)C.($\sqrt{3}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知0<x<1,0<y<1,
求证$\sqrt{{x^2}+{y^2}}$+$\sqrt{{x^2}+{{(1-y)}^2}}$+$\sqrt{{{(1-x)}^2}+{y^2}}$+$\sqrt{{{(1-x)}^2}+{{(1-y)}^2}}$≥2$\sqrt{2}$,并求使等号成立的条件.

查看答案和解析>>

同步练习册答案