| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 x=-1是抛物线y2=4x的准线,则P到x+2=0的距离等于|PF|+1,抛物线y2=4x的焦点F(1,0)过P作l1:3x-4y+12=0的垂线和抛物线的交点就是P,所以点P到直线l1:3x-4y+12=0的距离和到直线x=-1的距离之和的最小值就是F(1,0)到直线4x-3y+6=0距离,即可得出结论.
解答 解:∵x=-1是抛物线y2=4x的准线,
∴P到x+2=0的距离等于|PF|+1,
∵抛物线y2=4x的焦点F(1,0),
∴过P作l1:3x-4y+12=0的垂线和抛物线的交点就是P,
∴点P到直线l1:3x-4y+12=0的距离和到直线x=-1的距离之和的最小值就是F(1,0)到直线l1:3x-4y+12=00距离,
∴P到直线l1:4x-3y+6=0和l2:x+2=0的距离之和的最小值是$\frac{|3-0+12|}{\sqrt{9+16}}$+1=3+1=4.
故选:D.
点评 此题考查学生灵活运用抛物线的简单性质解决实际问题,灵活运用点到直线的距离公式化简求值,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com