精英家教网 > 高中数学 > 题目详情
6.以抛物线y2=4x的焦点为焦点,以直线y=±x为渐近线的双曲线标准方程为$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{\frac{1}{2}}$=1.

分析 设以直线y=±x为渐近线的双曲线的方程,再由双曲线经过抛物线y2=4x焦点F(1,0),能求出双曲线方程.

解答 解:设以直线y=±x为渐近线的双曲线的方程为x2-y2=λ(λ≠0),
∵双曲线经过抛物线y2=4x焦点F(1,0),
∴λ+λ=1,
∴λ=$\frac{1}{2}$
∴双曲线方程为:$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{\frac{1}{2}}$=1.
故答案为:$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{\frac{1}{2}}$=1.

点评 本题考查双曲线方程的求法,考查抛物线的方程,是基础题,解题时要认真审题,注意双曲线简单性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知P是抛物线y2=4x上的一个动点,则点P到直线l1:3x-4y+12=0和l2:x+2=0的距离之和的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与抛物线y2=4x的准线的一个交点的纵坐标为y0,若|y0|<2,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.(1,$\sqrt{5}$)C.($\sqrt{3}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设n∈N*,求证:$\frac{1}{{2}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{(2n)}^{2}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知0<x<$\frac{1}{y}$,求证:y-y2<$\frac{1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下面的数阵,第30行第20个数是861.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知0<x<1,0<y<1,
求证$\sqrt{{x^2}+{y^2}}$+$\sqrt{{x^2}+{{(1-y)}^2}}$+$\sqrt{{{(1-x)}^2}+{y^2}}$+$\sqrt{{{(1-x)}^2}+{{(1-y)}^2}}$≥2$\sqrt{2}$,并求使等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个三角形树阵如下:

按照以上规律,第10行从左到右的第3个数为247

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.l是经过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)焦点F且与实轴垂直的直线,A,B是双曲线C的两个顶点,若在l上存在一点P,使∠APB=60°,则双曲线的离心率的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步练习册答案