精英家教网 > 高中数学 > 题目详情
18.已知0<x<1,0<y<1,
求证$\sqrt{{x^2}+{y^2}}$+$\sqrt{{x^2}+{{(1-y)}^2}}$+$\sqrt{{{(1-x)}^2}+{y^2}}$+$\sqrt{{{(1-x)}^2}+{{(1-y)}^2}}$≥2$\sqrt{2}$,并求使等号成立的条件.

分析 依题意,作图如下,利用两点间的距离公式可知|PO|=$\sqrt{{x}^{2}+{y}^{2}}$,|PA|=$\sqrt{(1-x)^{2}+{y}^{2}}$,|PB|=$\sqrt{(1-x)^{2}+(1-y)^{2}}$,|PC|=$\sqrt{{x}^{2}+(1-y)^{2}}$,利用三角不等式可证|PO|+|PB|+|PA|+|PC|≥2$\sqrt{2}$

解答 证明:∵0<x<1,0<y<1,设P(x,y),A(1,0),B(1,1),C(0,1),如图:
则|PO|=$\sqrt{{x}^{2}+{y}^{2}}$,|PA|=$\sqrt{(1-x)^{2}+{y}^{2}}$,|PB|=$\sqrt{(1-x)^{2}+(1-y)^{2}}$,|PC|=$\sqrt{{x}^{2}+(1-y)^{2}}$,
∵|PO|+|PB|≥|BO|=$\sqrt{2}$,|PA|+|PC|≥|AC|=$\sqrt{2}$
∴|PO|+|PB|+|PA|+|PC|≥2 (当且仅当点P为正方形的对角线AC与OB的交点是取等号),
即x=y=$\frac{1}{2}$时取等号.
∴$\sqrt{{x}^{2}+{y}^{2}}$+$\sqrt{{x}^{2}+(1-y)^{2}}$+$\sqrt{(1-x)^{2}+{y}^{2}}$+$\sqrt{(1-x)^{2}+(1-y)^{2}}$$≥2\sqrt{2}$.

点评 本题考查不等式的证明,考查作图能力,突出考查两点间的距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求证不等式:xlnx>-x2+2x-1-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知a,b,c>0,求证:$\frac{{a}^{2}}{b}+\frac{{b}^{2}}{c}+\frac{{c}^{2}}{a}$≥a+b+c;
(2)已知a>0,b>0,a+b=1,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}≥8$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以抛物线y2=4x的焦点为焦点,以直线y=±x为渐近线的双曲线标准方程为$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{\frac{1}{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.利用数学归纳法证明$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n∈N*,且n≥2)时,第二步由k到k+1时不等式左端的变化是(  )
A.增加了$\frac{1}{2k+1}$这一项
B.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项
C.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项,同时减少了$\frac{1}{k}$这一项
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,抛物线E:y2=2px(p>0)的焦点与F2重合,A为曲线C与E的一个焦点,|AF1|=$\frac{7}{3}$,|AF2|=$\frac{5}{3}$,且∠AF2F1为锐角.
(1)求椭圆C和抛物线E的方程;
(2)若动点M在椭圆C上,动点N在直线l:y=2$\sqrt{3}$上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,点P(-m2,3)在抛物线y2=mx的准线上,则实数m=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线x2=2py(p>0)的准线经过椭圆$\frac{y^2}{2}+{x^2}$=1的一个焦点,则抛物线焦点坐标为(  )
A.(0,-2)B.(0,2)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若α∈(0,π),且sinα+2cosα=2,则tan$\frac{α}{2}$=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案