精英家教网 > 高中数学 > 题目详情
13.利用数学归纳法证明$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n∈N*,且n≥2)时,第二步由k到k+1时不等式左端的变化是(  )
A.增加了$\frac{1}{2k+1}$这一项
B.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项
C.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项,同时减少了$\frac{1}{k}$这一项
D.以上都不对

分析 当n=k时,写出左端,并当n=k+1时,写出左端,两者比较,关键是最后一项和增加的第一项的关系.

解答 解:当n=k时,左端=$\frac{1}{k}$+$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$,
那么当n=k+1时  左端=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,
故第二步由k到k+1时不等式左端的变化是增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项,同时减少了$\frac{1}{k}$这一项,
故选:C.

点评 本题考查数学归纳法证明,其中关键一步就是从k到k+1,是学习中的难点,也是学习中重点,解答过程中关键是注意最后一项与增添的第一项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.抛物线x=4y2的焦点坐标为(  )
A.($\frac{1}{16}$,0)B.(0,$\frac{1}{16}$)C.($\frac{1}{2}$,0)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b∈R+,且a≥b
求证:b≤$\sqrt{\frac{2}{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}}}$≤$\frac{2}{\frac{1}{a}+\frac{1}{b}}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$≤a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知0<x<$\frac{1}{y}$,求证:y-y2<$\frac{1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆Σ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,且经过点$P(2,\sqrt{2})$.
(Ⅰ)求椭圆Σ的方程;
(Ⅱ)A、B是椭圆Σ上两点,线段AB的垂直平分线l经过M(0,1),求△OAB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知0<x<1,0<y<1,
求证$\sqrt{{x^2}+{y^2}}$+$\sqrt{{x^2}+{{(1-y)}^2}}$+$\sqrt{{{(1-x)}^2}+{y^2}}$+$\sqrt{{{(1-x)}^2}+{{(1-y)}^2}}$≥2$\sqrt{2}$,并求使等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设斜率$\frac{1}{2}$为的直线l过抛物线y=ax2(a>0)的焦点F,且和x轴交于点A,若△OAF的面积为4,则实数a的值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A(3,-2)在抛物线C:x2=2py的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{2}$,1),离心率为$\frac{\sqrt{6}}{3}$,直线l:y=k(x+1)与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)在x轴上是否存在点M,使$\overrightarrow{MA}$•$\overrightarrow{MB}$+$\frac{5}{3{k}^{2}+1}$是与k无关的常数?若存在,求出点M的坐标,并求出此常数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案