| A. | 增加了$\frac{1}{2k+1}$这一项 | |
| B. | 增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项 | |
| C. | 增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项,同时减少了$\frac{1}{k}$这一项 | |
| D. | 以上都不对 |
分析 当n=k时,写出左端,并当n=k+1时,写出左端,两者比较,关键是最后一项和增加的第一项的关系.
解答 解:当n=k时,左端=$\frac{1}{k}$+$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$,
那么当n=k+1时 左端=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,
故第二步由k到k+1时不等式左端的变化是增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项,同时减少了$\frac{1}{k}$这一项,
故选:C.
点评 本题考查数学归纳法证明,其中关键一步就是从k到k+1,是学习中的难点,也是学习中重点,解答过程中关键是注意最后一项与增添的第一项.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{16}$,0) | B. | (0,$\frac{1}{16}$) | C. | ($\frac{1}{2}$,0) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com