精英家教网 > 高中数学 > 题目详情
1.已知0<x<$\frac{1}{y}$,求证:y-y2<$\frac{1}{x+1}$.

分析 由y>0,且1-y2<1,运用平方差公式,可得y-y2<$\frac{1}{\frac{1}{y}+1}$,又$\frac{1}{\frac{1}{y}+1}$<$\frac{1}{x+1}$,即可得证.

解答 证明:由0<x<$\frac{1}{y}$,可得y>0,
且1-y2<1,
可得(y-y2)•$\frac{1+y}{y}$=y(1-y)•$\frac{1+y}{y}$=1-y2<1,
即有y-y2<$\frac{1}{\frac{1+y}{y}}$=$\frac{1}{\frac{1}{y}+1}$,
又$\frac{1}{y}$>x,可得
$\frac{1}{\frac{1}{y}+1}$<$\frac{1}{x+1}$,
由不等式的传递性,可得
y-y2<$\frac{1}{x+1}$.

点评 本题考查不等式的证明,注意运用不等式的性质,主要是传递性,考查运算和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.抛物线$y=-\frac{1}{4}{x^2}$的准线方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a>0,b>0,且a2+$\frac{a}{b}$+$\frac{1}{{b}^{2}}$=3,求证:a+$\frac{1}{b}$≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知a,b,c>0,求证:$\frac{{a}^{2}}{b}+\frac{{b}^{2}}{c}+\frac{{c}^{2}}{a}$≥a+b+c;
(2)已知a>0,b>0,a+b=1,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}≥8$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若a,b,c为直角三角形三边,c为斜边,求证:a3+b3<c3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以抛物线y2=4x的焦点为焦点,以直线y=±x为渐近线的双曲线标准方程为$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{\frac{1}{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.利用数学归纳法证明$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n∈N*,且n≥2)时,第二步由k到k+1时不等式左端的变化是(  )
A.增加了$\frac{1}{2k+1}$这一项
B.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项
C.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$两项,同时减少了$\frac{1}{k}$这一项
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,点P(-m2,3)在抛物线y2=mx的准线上,则实数m=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,AD∥BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2$\sqrt{3}$,∠DAC=30°,M为PB中点.
(1)证明:AM∥平面PCD;
(2)若二面角M-PC-D的余弦值为-$\frac{{\sqrt{6}}}{4}$,求PA的长.

查看答案和解析>>

同步练习册答案