精英家教网 > 高中数学 > 题目详情
7.已知抛物线x2=2py(p>0)的准线经过椭圆$\frac{y^2}{2}+{x^2}$=1的一个焦点,则抛物线焦点坐标为(  )
A.(0,-2)B.(0,2)C.(0,-1)D.(0,1)

分析 利用椭圆和抛物线的简单性质直接求解.

解答 解:椭圆$\frac{y^2}{2}+{x^2}$=1的焦点坐标分别为(0,-1),(0,1)
∵抛物线x2=2py(p>0)的准线经过椭圆$\frac{y^2}{2}+{x^2}$=1的一个焦点,
∴$\frac{p}{2}$=1,
∴抛物线焦点坐标为(0,1).
故选:D.

点评 本题考查抛物线中参数的求法,是基础题,解题时要注意椭圆线和抛物线的简单性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与抛物线y2=4x的准线的一个交点的纵坐标为y0,若|y0|<2,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.(1,$\sqrt{5}$)C.($\sqrt{3}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知0<x<1,0<y<1,
求证$\sqrt{{x^2}+{y^2}}$+$\sqrt{{x^2}+{{(1-y)}^2}}$+$\sqrt{{{(1-x)}^2}+{y^2}}$+$\sqrt{{{(1-x)}^2}+{{(1-y)}^2}}$≥2$\sqrt{2}$,并求使等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个三角形树阵如下:

按照以上规律,第10行从左到右的第3个数为247

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A(3,-2)在抛物线C:x2=2py的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用数学归纳法证明:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{n(n+1)}{2(2n+1)}$,推证当n=k+1等式也成立时,用上归纳假设后需要证明的等式是(  )
A.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
B.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2k+3}$
C.$\frac{k(k+1)}{(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
D.$\frac{k(k+1)}{2(2k+3)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.直线OM的斜率与l的斜率的乘积为(  )
A.$\frac{b^2}{a^2}$B.-$\frac{b^2}{a^2}$
C.-$\frac{c^2}{a^2}$D.不确定,随A,B的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.l是经过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)焦点F且与实轴垂直的直线,A,B是双曲线C的两个顶点,若在l上存在一点P,使∠APB=60°,则双曲线的离心率的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知tanα=2,则tan(α+$\frac{π}{4}$)=-3,cos2α=$\frac{1}{5}$,$\frac{sinα}{sinα+cosα}$=$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案