精英家教网 > 高中数学 > 题目详情
12.用数学归纳法证明:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{n(n+1)}{2(2n+1)}$,推证当n=k+1等式也成立时,用上归纳假设后需要证明的等式是(  )
A.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
B.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2k+3}$
C.$\frac{k(k+1)}{(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
D.$\frac{k(k+1)}{2(2k+3)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$

分析 首先由题目假设n=k时等式成立,再用k+1替换,即可得到结果

解答 解:假设n=k时成立,即为:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+…+$\frac{{k}^{2}}{(2k+1)(2k-1)}$=$\frac{k(k+1)}{2(2k+1)}$,
那么当n=k+1时,需要证明,$\frac{k(k+1)}{2(2k+3)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$,
故选:D.

点评 此题主要考查数学归纳法的概念问题,涵盖知识点少,属于基础性题目.需要同学们对概念理解记忆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设a≥0,b≥0,且a≠b,求证:对于任意正数p都有[$\frac{a+pb}{p+1}$]2<$\frac{{a}^{2}+p{b}^{2}}{p+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,抛物线E:y2=2px(p>0)的焦点与F2重合,A为曲线C与E的一个焦点,|AF1|=$\frac{7}{3}$,|AF2|=$\frac{5}{3}$,且∠AF2F1为锐角.
(1)求椭圆C和抛物线E的方程;
(2)若动点M在椭圆C上,动点N在直线l:y=2$\sqrt{3}$上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正数x,y满足x+2y=1,则$\frac{1}{x}$+$\frac{1}{y}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线x2=2py(p>0)的准线经过椭圆$\frac{y^2}{2}+{x^2}$=1的一个焦点,则抛物线焦点坐标为(  )
A.(0,-2)B.(0,2)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=-x2-x+2,则函数f(x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|x=3n-1,n∈Z},B={x|y=$\sqrt{25-{x^2}}$},则集合A∩B的元素个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四种说法中,
①命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2,$\frac{\sqrt{2}}{2}$),则f(4)的值等于$\frac{1}{2}$;
④已知向量$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(2,1),则向量 $\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影是$\frac{2}{5}$.
说法错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2cos2x+cos(2x+$\frac{π}{3}$)-1在[0,π]内的一条对称轴方程是$x=\frac{5π}{12}$或$x=\frac{11π}{12}$,在[0,π]内单调递增区间是$[\frac{5π}{12},\frac{11π}{12}]$.

查看答案和解析>>

同步练习册答案