分析 $\frac{1}{x}$+$\frac{1}{y}$=($\frac{1}{x}$+$\frac{1}{y}$)(x+2y)=1+2+$\frac{2y}{x}$+$\frac{x}{y}$,根据基本不等式即可求出.
解答 解:$\frac{1}{x}$+$\frac{1}{y}$=($\frac{1}{x}$+$\frac{1}{y}$)(x+2y)=1+2+$\frac{2y}{x}$+$\frac{x}{y}$≥3+2$\sqrt{\frac{2y}{x}•\frac{x}{y}}$=3+2$\sqrt{2}$,当且仅当$\frac{2y}{x}$=$\frac{x}{y}$,即x=$\sqrt{2}$-1,y=$\frac{2-\sqrt{2}}{2}$时取等号,
则$\frac{1}{x}$+$\frac{1}{y}$有最小值,为3+2$\sqrt{2}$,无最大值.
点评 本题考查了基本不等式的应用,关键是转化,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$ | |
| B. | $\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2k+3}$ | |
| C. | $\frac{k(k+1)}{(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$ | |
| D. | $\frac{k(k+1)}{2(2k+3)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com