精英家教网 > 高中数学 > 题目详情
15.一个三角形树阵如下:

按照以上规律,第10行从左到右的第3个数为247

分析 观察每一行的首数,发现首数指数的规律,从而求出第10行的首数,然后根据每行的规律可求出所求.

解答 解:“三角形数阵”的第一行为1;第二行为2 22;第三行为23 24 25;…;
观察每一行的第一个数是底数是2,幂指数是前边序号的和,
可知第10行的首数为21+2+…+9=245
则第10行从左向右的第3个数为247
故答案为:247

点评 本题考查了探求数列规律型的问题,解题时应弄清题意,寻找题目中的数列特点,得出规律,从而解得结果,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.抛物线y=-8x2的焦点坐标为$({0,-\frac{1}{32}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以抛物线y2=4x的焦点为焦点,以直线y=±x为渐近线的双曲线标准方程为$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{\frac{1}{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,抛物线E:y2=2px(p>0)的焦点与F2重合,A为曲线C与E的一个焦点,|AF1|=$\frac{7}{3}$,|AF2|=$\frac{5}{3}$,且∠AF2F1为锐角.
(1)求椭圆C和抛物线E的方程;
(2)若动点M在椭圆C上,动点N在直线l:y=2$\sqrt{3}$上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,点P(-m2,3)在抛物线y2=mx的准线上,则实数m=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正数x,y满足x+2y=1,则$\frac{1}{x}$+$\frac{1}{y}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线x2=2py(p>0)的准线经过椭圆$\frac{y^2}{2}+{x^2}$=1的一个焦点,则抛物线焦点坐标为(  )
A.(0,-2)B.(0,2)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|x=3n-1,n∈Z},B={x|y=$\sqrt{25-{x^2}}$},则集合A∩B的元素个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{\sqrt{lo{g}_{\frac{1}{2}}(x-1)}}{|x|-2}$的定义域为(1,2).

查看答案和解析>>

同步练习册答案