精英家教网 > 高中数学 > 题目详情
13.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AAl=2,∠ABC=120°,点P在线段AC1上,且AP=2PCl,M为线段AC的中点.
(I)证明:BM∥平面B1CP;
(Ⅱ)求直线AB1与平面B1CP所成角的余弦值.

分析 (I)连结BC1交B1C于F,连结MC1交CP于N,连结FN,证明FN为△BC1M的中位线即可得出BM∥FN,于是结论得证;
(II)连结MF,过M作MG⊥CP于G点,连结FG,则可证明MG⊥平面B1CP,由于AB1∥MF,故而∠MFG为直线AB1与平面B1CP所成角,利用勾股定理求出FG,MF得出线面角的余弦值.

解答 证明:(I)连结BC1交B1C于F,连结MC1交CP于N,连结FN,
∵四边形BCC1B1是矩形,∴F为BC1的中点.
取AP的中点Q,连结MQ,
∵MQ是△APC的中位线,∴MQ∥PC,
又AP=2PCl,∴$\frac{{C}_{1}P}{{C}_{1}Q}=\frac{1}{2}$,∴$\frac{{C}_{1}N}{{C}_{1}M}$=$\frac{{C}_{1}P}{{C}_{1}Q}=\frac{1}{2}$,即N为C1M的中点.
∴FN为△C1BM的中位线,
∴FN∥BM,又FN?平面B1CP,BM?平面B1CP,
∴BM∥平面B1CP.
(II)连结MF,过M作MG⊥CP于G点,连结FG,
∵BM⊥AC,BM⊥CC1,∴BM⊥平面ACC1
∵BM∥FN,∴FN⊥平面ACC1.∴FN⊥MG.
又MG⊥PC,FN∩PC=N,
∴MG⊥平面B1PC,
又AB1∥MF,
∴∠MFG为直线AB1与平面B1CP所成角,
∵AB=BC=AA1=2,∠ABC=120°,∴AB1=2$\sqrt{2}$,CM=$\frac{1}{2}AC$=$\sqrt{3}$,
∴MF=$\sqrt{2}$,MG=$\frac{2\sqrt{21}}{7}$,∴FG=$\frac{2\sqrt{7}}{7}$.
∴cos∠MFG=$\frac{FG}{MF}$=$\frac{\sqrt{14}}{7}$.
∴直线AB1与平面B1CP所成角的余弦值为$\frac{\sqrt{14}}{7}$.

点评 本题考查了线面平行的判定,线面垂直的判定,线面角的计算,空间向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.三棱柱ABC-A1B1C1中,底面ABC为等边三角形,AB=2,C1C⊥底面ABC,BC1与底面ABC所成角为45°,则此三棱柱体积是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求证:$已知:a>0,求证:\sqrt{a+5}-\sqrt{a+3}>\sqrt{a+6}-\sqrt{a+4}$
(2)已知:△ABC的三条边分别为a,b,c.求证:$\frac{a+b}{1+a+b}>\frac{c}{1+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0),若点M到该抛物线焦点的距离为4,则|OM|=$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证不等式:xlnx>-x2+2x-1-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.抛物线y=-8x2的焦点坐标为$({0,-\frac{1}{32}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a≥0,b≥0,且a≠b,求证:对于任意正数p都有[$\frac{a+pb}{p+1}$]2<$\frac{{a}^{2}+p{b}^{2}}{p+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,抛物线E:y2=2px(p>0)的焦点与F2重合,A为曲线C与E的一个焦点,|AF1|=$\frac{7}{3}$,|AF2|=$\frac{5}{3}$,且∠AF2F1为锐角.
(1)求椭圆C和抛物线E的方程;
(2)若动点M在椭圆C上,动点N在直线l:y=2$\sqrt{3}$上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案