精英家教网 > 高中数学 > 题目详情
9.若正实数a、b满足log8a+log4b2=5,log8b+log4a2=5,则log4a+log8b2=$\frac{35}{8}$.

分析 化简方程,求出log2a+log2b,即可求解结果.

解答 解:正实数a、b满足log8a+log4b2=5,log8b+log4a2=5,
可得:$\frac{1}{3}$log2a+log2b=5…①,$\frac{1}{3}$log2b+log2a=5…②,
解①②得:log2a=$\frac{15}{4}$,log2b=$\frac{15}{4}$,
log4a+log8b2=$\frac{1}{2}$log2a+$\frac{2}{3}$log2b=$\frac{35}{8}$.
故答案为:$\frac{35}{8}$.

点评 本题考查函数的零点与方程的根的关系,对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.甲乙两人进行象棋比赛,约定每局胜者得1分,负者得0分.若其中的一方比对方多得2分或下满5局时停止比赛.设甲在每局中获胜的概率为$\frac{2}{3}$,乙在每局中获胜的概率为$\frac{1}{3}$,且各局胜负相互独立.
(1)求没下满5局甲即获胜的概率;
(2)设比赛停止时已下局数为ξ,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对某个数学题,甲解出的概率为$\frac{2}{3}$,乙解出的概率为$\frac{3}{4}$,两人独立解题,记X为解出该题的人数,则E(X)=$\frac{17}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足${2^{a_1}}$•${2^{a_2}}$…${2^{a_n}}$=${2^{\frac{{75n-5{n^2}}}{2}}}$(n∈N*).
(Ⅰ)求an
(Ⅱ)令Tn=|an+an+1+…+an+5|(n∈N*),求|Tn|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC的面积为3$\sqrt{6}$,若动点P满足$\overrightarrow{AP}$=2λ$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),则点P的轨迹与直线AB,AC所围成封闭区域的面积是(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.把函数f(x)=cos2x+sinxcosx的图象向右平移$\frac{π}{6}$个单位长度,再把所得图象每个点的横坐标扩大为原来的2倍,得到函数y=g(x)的图象,则下列关于函数g(x)的叙述正确的是(  )
A.g(x)的一条对称轴方程为x=$\frac{π}{12}$B.g(x)的值域为[-$\sqrt{2}$,$\sqrt{2}$]
C.在(0,π)上单调递减D.关于点($\frac{13π}{12}$,$\frac{1}{2}$)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=$\frac{2i}{1-i}$(其中i是虚数单位)的共轭复数为$\overline{z}$,则|$\overline{z}$|的值为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.$\int\begin{array}{l}2\\ 1\end{array}$($\frac{1}{x}$-$\frac{1}{x^2}$)dx=ln2-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在边长为4cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为B,构成一个三棱锥
(1)求点B到面AEF的距离
(2)求几何体B-AEF的表面积;
(3)求直线BE与面MNE所成角的余弦值.

查看答案和解析>>

同步练习册答案