精英家教网 > 高中数学 > 题目详情
19.甲乙两人进行象棋比赛,约定每局胜者得1分,负者得0分.若其中的一方比对方多得2分或下满5局时停止比赛.设甲在每局中获胜的概率为$\frac{2}{3}$,乙在每局中获胜的概率为$\frac{1}{3}$,且各局胜负相互独立.
(1)求没下满5局甲即获胜的概率;
(2)设比赛停止时已下局数为ξ,求ξ的分布列和数学期望Eξ.

分析 (1)没下满5局甲即获胜有两种情况:①是两局后甲获胜,②是四局后甲获胜,由此利用互斥事件概率加法公式能求出甲获胜的概率.
(2)依题意,ξ的所有取值为2,4,5,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)没下满5局甲即获胜有两种情况:
①是两局后甲获胜,此时p1=$\frac{2}{3}×\frac{2}{3}$=$\frac{4}{9}$,
②是四局后甲获胜,此时p2=(${C}_{2}^{1}×\frac{2}{3}×\frac{1}{3}$)×$\frac{2}{3}×\frac{2}{3}$=$\frac{16}{81}$,
∴甲获胜的概率p=p1+p2=$\frac{4}{9}+\frac{16}{81}$=$\frac{52}{81}$.
(2)依题意,ξ的所有取值为2,4,5,
设前4局每两局比赛为一轮,则该轮结束时比赛停止的概率为:
($\frac{2}{3}$)2+($\frac{1}{3}$)2=$\frac{5}{9}$,
若该轮结束时,比赛还将继续,则甲、乙在该轮中必是各得一分,
此时,该轮比赛结果对下轮比赛结果是否停止没有影响,
从而有:
P(ξ=2)=$\frac{5}{9}$,
P(ξ=4)=$\frac{4}{9}×\frac{5}{9}$=$\frac{20}{81}$,
P(ξ=5)=$(\frac{4}{9})^{2}$=$\frac{16}{81}$,
∴ξ的分布列为:

 ξ 2 4 5
 P $\frac{5}{9}$ $\frac{20}{81}$ $\frac{16}{81}$
∴Eξ=$2×\frac{5}{9}+4×\frac{20}{81}+5×\frac{16}{81}$=$\frac{250}{81}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知a,b,c∈R+,求证:$\frac{bc}{a}$+$\frac{ac}{b}$+$\frac{ab}{c}$≥a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.当x>y>e-1时,证明不等式:exln(1+y)>eyln(1+x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“ALS 冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小内接受挑战,要么选为慈善机构捐款(不接受挑战),并且不能重复参加该活动,若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频,然后便可以邀请另外3个人参与这项活动,假设每个人接受挑战与不接受挑战是等可能的,且互不影响,若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个接受挑战的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1、F2是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,以F1F2为直径的圆与椭圆在第一象限的交点为P,过点P向x轴作垂线,垂足为H,若|PH|=$\frac{a}{2}$,则此椭圆的离心率为(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{17}-1}}{4}$D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.质检部门从某超市销售的甲、乙两种食用油中分划随机抽取100桶检测某项质量指标,由检测结果得到如下的频率分布直方图:

(I)写出频率分布直方图(甲)中a的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为${s}_{1}^{2}$,${s}_{2}^{2}$,试比较${s}_{1}^{2}$,${s}_{2}^{2}$的大小(只要求写出答案);
(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一个桶的质量指标大于20,且另一个不大于20的概率;
(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值Z服从正态分布N(μ,δ2).其中 μ近似为样本平均数$\overline{x}$,δ2近似为样本方差${s}_{2}^{2}$,设X表示从乙种食用油中随机抽取lO桶,其质量指标值位于(14.55,38.45)的桶数,求X的数学期望.
注:①同一组数据用该区问的中点值作代表,计算得s2=$\sqrt{142.75}$≈11.95;
②若Z-N(μ,δ2),则P( μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$)相邻两对称中心之间的距离为$\frac{π}{2}$,将函数y=f(x)的图象向左平移$\frac{π}{3}$个单位所得图象关于直线x=$\frac{π}{2}$对称,则φ=(  )
A.-$\frac{π}{4}$B.-$\frac{π}{6}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知盒中有4个红球,4个黄球,4个白球,且每种颜色的四个球均按A,B,C,D编号.现从中摸出4个球(除颜色与编号外球没有区别).
(Ⅰ)求恰好包含字母A,B,C,D的概率;
(Ⅱ)设摸出的4个球中出现的颜色种数为X,求随机变量X的分布列和期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若正实数a、b满足log8a+log4b2=5,log8b+log4a2=5,则log4a+log8b2=$\frac{35}{8}$.

查看答案和解析>>

同步练习册答案