精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$)相邻两对称中心之间的距离为$\frac{π}{2}$,将函数y=f(x)的图象向左平移$\frac{π}{3}$个单位所得图象关于直线x=$\frac{π}{2}$对称,则φ=(  )
A.-$\frac{π}{4}$B.-$\frac{π}{6}$C.$\frac{π}{6}$D.$\frac{π}{4}$

分析 依题意知T,利用周期公式可求ω,利用函数y=Asin(ωx+φ)的图象变换,三角函数的图象和性质可得到φ=kπ-$\frac{7π}{6}$(k∈Z),结合范围|φ|≤$\frac{π}{2}$,于是可求得φ的值.

解答 解:∵函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$)相邻两对称中心之间的距离为$\frac{π}{2}$,
∴$\frac{1}{2}$T=$\frac{π}{2}$,又ω>0,
∴T=$\frac{2π}{ω}$=π,
∴ω=2;
又∵g(x)=f(x+$\frac{π}{3}$)=2sin[2(x+$\frac{π}{3}$)+φ]=2sin(2x+$\frac{2π}{3}$+φ)的图象关于直线x=$\frac{π}{2}$对称,
∴2×$\frac{π}{2}$+$\frac{2π}{3}$+φ=kπ+$\frac{π}{2}$(k∈Z),
∴φ=kπ-$\frac{7π}{6}$(k∈Z),又|φ|≤$\frac{π}{2}$,
∴φ=-$\frac{π}{6}$.
故选:B.

点评 本题考查函数y=Asin(ωx+φ)的解析式的确定与函数y=Asin(ωx+φ)的图象变换,考查三角函数的奇偶性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某数学兴趣小组为了烟瘴视觉和空间能力与性别是否有关,从兴趣小组中按分层抽样的方法抽取50名同学(男30人,女20人),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表所示:(单位:人)
题型
性别
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)从这50名同学中随机选取男生和女生各1人,求他们选做的题不同的概率;
(3)已知选择做几何题的8名女生有3人解答正确,从这8人中任意抽取3人对他们的答题情况进行研究,被抽取的女生中解答正确的人数记为X,求X的分布列及数学期望E(X).
附表及公式:
P(k2≥k)0.150.100.050.0250.010
k2.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数z=cosθ-$\frac{5}{13}$+($\frac{12}{13}$-sinθ)i(i是虚数单位)是纯虚数,则tanθ的值为(  )
A.-$\frac{12}{5}$B.$\frac{12}{5}$C.-$\frac{5}{12}$D.±$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲乙两人进行象棋比赛,约定每局胜者得1分,负者得0分.若其中的一方比对方多得2分或下满5局时停止比赛.设甲在每局中获胜的概率为$\frac{2}{3}$,乙在每局中获胜的概率为$\frac{1}{3}$,且各局胜负相互独立.
(1)求没下满5局甲即获胜的概率;
(2)设比赛停止时已下局数为ξ,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.“f(0)=0”是“函数f(x)是奇函数”的必要不充分条件
B.若p:?x0∈R,x${\;}_{0}^{2}$-x0-1>0,则¬p:?x∈R,x2-x-1<0
C.命题“若x2-1=0,则x=1或x=-1”的否命题是“若x2-1≠0,则x≠1或x≠-1”
D.命题p和命题q有且仅有一个为真命题的充要条件是(¬p∧q)∨(¬q∧p)为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y∈{1,2,3,4,5,6},且x+y=7,则y≥$\frac{x}{2}$的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是等差数列,a2=6,S4=28,数列{bn}满足:b1=1,$\frac{1}{{b}_{1}}$+$\frac{1}{2{b}_{2}}$+…+$\frac{1}{n{b}_{n}}$=$\frac{1}{{b}_{n+1}}$-1(n∈N
(1)求an和bn
(2)记数列{$\frac{{b}_{n}}{{a}_{n}}$}的前n项和Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对某个数学题,甲解出的概率为$\frac{2}{3}$,乙解出的概率为$\frac{3}{4}$,两人独立解题,记X为解出该题的人数,则E(X)=$\frac{17}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=$\frac{2i}{1-i}$(其中i是虚数单位)的共轭复数为$\overline{z}$,则|$\overline{z}$|的值为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案