精英家教网 > 高中数学 > 题目详情
如图1,在平行四边形ABCD中,∠A=90°,∠B=135°,∠C=60°,AB=AD,M,N分别是边AB,CD上的点,且2AM=MD,2CN=ND,如图1,将△ABD沿对角线BD折叠,使得平面ABD⊥平面BCD,并连结AC,MN(如图2).

(1)证明:MN∥平面ABC;
(2)证明:AD⊥BC;
(3)若BC=1,求三棱锥A-BCD的体积.
考点:直线与平面平行的判定,棱柱、棱锥、棱台的体积,直线与平面垂直的性质
专题:空间位置关系与距离
分析:(1)先证明出MN∥AC,继而根据线面平行的判定定理证明出MN∥平面ABC.
(2)先证明出BC⊥BD,根据线面垂直的判定定理证明出BC⊥平面ABD,最后由线面垂直的性质可推断出AD⊥BC.
(3)分别在△BCD和△ABD中求得BD和AB,则三角形ABD的面积可得,最后利用VA-BCD=VC-ABD求得三棱锥的体积.
解答: (1)证明:在△ACD中,
∵2AM=MD,2NC=ND,
∴MN∥AC,
∵MN?平面ABC,AC?平面ABC,
∴MN∥平面ABC.
(2)证明:在△ABD中,AB=AD,∠A=90°,
∴∠ABD=45°,
∵在平面四边形ABCD中,∠B=135°,
∴BC⊥BD,
∵平面ABD⊥平面BCD,BC?平面BCD,平面ABD∩平面BCD=BD,
∴BC⊥平面ABD,
又AD?平面ABD,
∴AD⊥BC.
(3)解:在△BCD中,
∵BC=1,∠CBD=90°,∠BCD=60°,
∴BD=
3

在△ABD中,∠A=90°,AB=AD,
∴AB=
6
2

∴S△ABD=
1
2
AB•AD=
3
4

由(2)知BC⊥平面ABD,
∴VA-BCD=VC-ABD=
1
3
×
3
4
×1=
1
4
点评:本题主要考查空间点、线、面的位置关系及三棱锥的体积.考查空间想象能力、运算能力和逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在复平面内,复数-2+3i对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

若m≥2,求证:
m2-2
-
2
≥m-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C的对边分别为a、b、c,已知acosB+bcosA=2(bcosC+ccosB).
(1)求
sinC
sinA
的值;
(2)若cosB=
1
4
,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在x∈[-e,0)上的函数f(x)=ax-ln(-x),是否存在实数a,使f(x)的最小值为3,若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=
1
2
AB.直角梯形ACEF中,EF
.
.
1
2
AC
,∠FAC是锐角,且平面ACEF⊥平面ABCD.
(Ⅰ)求证:BC⊥AF;
(Ⅱ)试判断直线DF与平面BCE的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=
1
3
GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P-BCG的体积为
8
3

(1)求直线DP到平面PBG所成角的正弦值;
(2)在棱PC上是否存在一点F,使异面直线DF与GC所成的角为60°,若存在,确定点F的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a>b>c,且a+b+c=0,用分析法求证:
b2-ac
3
a.
(2)f(x)=
1
3x+
3
,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=xlnx,若f′(x0)=3,则x0=
 

查看答案和解析>>

同步练习册答案