【题目】在四棱锥P-ABCD中,底面ABCD是直角梯形,
,
,平面
平面ABCD.
(1)求证:
;
(2)若
,且
,求四棱锥P-ABCD的体积.
【答案】(1)证明见解析;(2)![]()
【解析】
(1)取CD的中点M,连接AM,由条件知四边形BCMA为正方形,可得
,再由平面
平面ABCD,
平面ABCD,平面
平面
,即可证得
平面PAD,从而证得
;
(2)过点P作
交AD的延长线于点E,可证PE为四棱锥的高,再根据几何关系计算相关棱长,并利用面积公式和
,即可求得
,进而求得四棱锥P-ABCD的体积.
(1)证明:如图,在直角梯形ABCD中,取CD的中点M,连接AM,
![]()
由条件知四边形BCMA为正方形,
,
,
∵平面
平面ABCD,
平面ABCD,
平面
平面
,
平面PAD,
平面PAD,
;
(2)过点P作
交AD的延长线于点E,如图,
![]()
∵平面
平面ABCD,
平面PAD,平面
平面
,
∴
平面ABCD.
设
,则
,
,
,
,
,
,
为等腰三角形,易得
边上的高为
,
,
,
.
科目:高中数学 来源: 题型:
【题目】某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n和m的值不可以是下列四个选项中的哪组( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,的焦点为
,过点
的直线
的斜率为
,与抛物线
交于
,
两点,抛物线在点
,
处的切线分别为
,
,两条切线的交点为
.
(1)证明:
;
(2)若
的外接圆
与抛物线
有四个不同的交点,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段
,
,
,
,
,
,到如图所示的频率分布直方图.
![]()
(1)求图中
的值及样本的中位数与众数;
(2)若从竞赛成绩在
与
两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于
分为事件
,求事件
发生的概率.
(3)为了激励同学们的学习热情,现评出一二三等奖,得分在
内的为一等奖,得分在
内的为二等奖, 得分在
内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设
为获得三等奖的人数,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为
且满足
,当
时,
.
(1)判断
在
上的单调性并加以证明;
(2)若方程
有实数根
,则称
为函数
的一个不动点,设正数
为函数
的一个不动点,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,以
轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆
的方程为
被圆
截得的弦长为
.
(Ⅰ)求实数
的值;
(Ⅱ)设圆
与直线
交于点
,若点
的坐标为
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:
,并整理得到如下频率分布直方图:
![]()
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,实数
满足
;
(1)当函数
的定义域为
时,求
的值域;
(2)求函数关系式
,并求函数
的定义域
;
(3)在(2)的结论中,对任意
,都存在
,使得
成立,求实数
的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com