【题目】已知F1 , F2分别为双曲线 ﹣ =1(a>0,b>0)的左右焦点,如果双曲线上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为( )
A.e>
B.1<e<
C.e>
D.1<e<
科目:高中数学 来源: 题型:
【题目】在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于( )
A.2
B.1
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若在定义域内存在实数,满足,则称为“类函数”.
(1)已知函数,试判断是否为“类函数”?并说明理由;
(2)设是定义在上的“类函数”,求是实数的最小值;
(3)若 为其定义域上的“类函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0),直线y=x+ 与以原点为圆心,以椭圆C的短半轴为半径的圆相切,F1 , F2为其左右焦点,P为椭圆C上的任意一点,△F1PF2的重心为G,内心为I,且IG∥F1F2 .
(1)求椭圆C的方程;
(2)已知A为椭圆C上的左顶点,直线∫过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1 , k2满足k1+
k2=﹣ ,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M为△ABC的中线AD的中点,过点M的直线分别交两边AB、AC于点P、Q,设
=x , ,记y=f(x).
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,x∈[0,1].若对任意x1∈[ ,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S﹣ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2 ,则正三棱锥S﹣ABC的体积为 , 其外接球的表面积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据气象部门预报,在距离码头A南偏东45°方向400千米B处的台风中心正以20千米每小时的速度向北偏东15°方向沿直线移动,以台风中心为圆心,距台风中心100 千米以内的地区都将受到台风影响.据以上预报估计,从现在起多长时间后,码头A将受到台风的影响?影响时间大约有多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高三期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及样本频率分布表如下:
分组 | 频数 | 频率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合计 | ③ | ④ |
(1)请把给出的样本频率分布表中的空格都填上;
(2)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学,已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com