精英家教网 > 高中数学 > 题目详情

某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

(1)有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (2)

解析试题分析:(1)将列联表中的数据代入公式计算,得的值,然后与表格中的比较,若小于,则有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (2)从5名学生中随机抽取3人,有10种结果,构成基本事件空间,其中“至多有1人喜欢甜品”这个事件包含7个基本事件,代入古典概型的概率计算公式即可.
(1)将列联表中的数据代入公式计算.得.由于.所以有
的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.
(2)从5名数学系的学生任取3人的一切可能结果所组成的基本事件空间 .其中表示喜欢甜品的学生,表示不喜欢甜品的学生,
由10个基本事件组成,切这些基本事件出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则.事件A是由7个基本事件组成.因而
考点:1、独立性检验;2、古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.
(2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01).
(3)设表示该班两个学生的百米测试成绩,已知,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,
统计数据如下表所示:

 
积极参加班级工作
 不太积极参加班级工作
合计
学习积极性高
      18
       7
 25
学习积极性一般
       6
       19
 25
合计
      24
       26
 50
 
试运用独立性检验的思想方法分析:学生的学习积极性与对待班级的态度是否有关系?

2

 
说明理由。

附:K2=
P(K2≥k0 )
0.10
0.05
0.025
0.010
0.005
0.001
   k0
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某电视台在一次对文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关数据如下表所示:

   
文艺节目
新闻节目
总计
20岁到40岁
40
20
60
40岁以上
15
25
40
总计
55
45
100
 
(1)用分层抽样方法在收看新闻节目的观众中,随机抽取9名,那么40岁以上的观众应抽取几名?
(2)由表中数据分析,我们能否有99%的把握认为收看新闻节目的观众与年龄有关?(最后结果保留3位有效数字,四舍五入)
附:

0.05
0.01
0.005
0.001

3.841
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某人摆一个摊位卖小商品,一周内出摊天数x与盈利y(百元),之间的一组数据关系见表:


2
3
4
5
6

2.2
3.8
5.5
6.5
7.0
 
已知
(1)在下面坐标系中画出散点图;

(2)计算,并求出线性回归方程;
(3)在第(2)问条件下,估计该摊主每周7天要是天天出摊,盈利为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人  
(1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场共10人得分大于7分,其中2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和的分布列。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年来,我国很多城市都出现了严重的雾霾天气.为了更好地保护环境,2012年国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区 的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2014年1月1日到 2014年3月31日这90天对某居民区的PM2. 5平均浓度的监测数据统计如下:

组别
 PM2.5浓度(微克/立方米)
频数(天)
第一组
(0,35]
24
第二组
(35,75]
48
第三组
(75,115]
12
第四组
>115
6
 
(1)在这天中抽取天的数据做进一步分析,每一组应抽取多少天?
(2)在(I)中所抽取的样本PM2. 5的平均浓度超过75(微克/立方米)的若干天中,随 机抽取2天,求至少有一天平均浓度超过115(微克/立方米)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:

若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).
(1)试预测当广告费支出为12万元时,销售额是多少?
(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下茎叶图记录了甲,乙两组各三名同学在期末考试中的数学成绩(满分为100分).乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.

(1)若甲,乙两个小组的数学平均成绩相同,求a的值.
(2)求乙组平均成绩超过甲组平均成绩的概率.
(3)当a=2时,分别从甲,乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值为2分的概率.

查看答案和解析>>

同步练习册答案