精英家教网 > 高中数学 > 题目详情
(2013•陕西)已知向量
a
=(cosx,-
1
2
),
b
=(
3
sinx,cos2x),x∈R,设函数f(x)=
a
b

(Ⅰ) 求f(x)的最小正周期.
(Ⅱ) 求f(x)在[0,
π
2
]上的最大值和最小值.
分析:(Ⅰ)通过向量的数量积以及二倍角的正弦函数两角和的正弦函数,化简函数为一个角的一个三角函数的形式,通过周期公式,求f (x)的最小正周期.
(Ⅱ) 通过x在[0,
π
2
],求出f(x)的相位的范围,利用正弦函数的最值求解所求函数的最大值和最小值.
解答:解:(Ⅰ)函数f(x)=
a
b
=(cosx,-
1
2
)•(
3
sinx,cos2x)
=
3
sinxcosx-
1
2
cos2x

=sin(2x-
π
6

最小正周期为:T=
2
=π.
(Ⅱ)当x∈[0,
π
2
]时,2x-
π
6
[-
π
6
6
]

由正弦函数y=sinx在[-
π
6
6
]
的性质可知,sinx∈[-
1
2
,1]

∴sin(2x-
π
6
∈[-
1
2
,1]

∴f(x)∈[-
1
2
,1],
所以函数f (x)在[0,
π
2
]上的最大值和最小值分别为:1,-
1
2
点评:本题考查向量的数量积以及两角和的三角函数,二倍角公式的应用,三角函数的值域的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•陕西)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.
(Ⅰ) 求动点M的轨迹C的方程;
(Ⅱ) 过点P(0,3)的直线m与轨迹C交于A,B两点.若A是PB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)已知向量 
a
=(1,m),
b
=(m,2),若
a
b
,则实数m等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)已知函数f(x)=ex,x∈R.
(Ⅰ) 求f(x)的反函数的图象上的点(1,0)处的切线方程;
(Ⅱ) 证明:曲线y=f(x)与曲线y=
1
2
x
2
+x+1
有唯一公共点.
(Ⅲ) 设a<b,比较f(
a+b
2
)与
f(b)-f(a)
b-a
的大小,并说明理由.

查看答案和解析>>

同步练习册答案