分析 (1)直接利用两角和与差的三角函数化简求解即可.
(2)通过正切函数与正弦函数以及余弦函数的化简,利用两角和与差的三角函数化简求解即可.
解答 (本小题10分)
解:(1)$\frac{{sin{{27}°}+cos{{45}°}sin{{18}°}}}{{cos{{27}°}-sin{{45}°}sin{{18}°}}}$=$\frac{sin(45°-18°)+sin45°cos18°}{cos(45°-18°)-sin45°sin18°}$=$\frac{sin45°cos18°}{cos45°cos18°}$=tan45°=1
(2)[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]$\sqrt{2{{sin}^2}{{80}°}}$
=[2sin50°+sin10°($\frac{cos10°+\sqrt{3}sin10°}{cos10°}$)]$\sqrt{2}sin80°$
=$\frac{[2sin50°cos10°+2sin10°(cos60°cos10°+sin60°sin10°)•\sqrt{2}sin80°]}{cos10°}$
=2[sin50°cos10°+sin10°cos(60°-10°)]•$\sqrt{2}$
=$\sqrt{6}$.
点评 本题考查同角三角函数基本关系式以及两角和与差的三角函数的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(百万元) | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点 | |
| B. | 若直线l与平面α平行,则l与平面α内的任意一条直线都平行 | |
| C. | 若直线l上有无数个点不在平面α内,则l∥α | |
| D. | 如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{\sqrt{5}-1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com