分析 由已知条件分别求得$\underset{lim}{n→∞}$an和$\underset{lim}{n→∞}$bn的极限值,则$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{b}_{n}}$=$\frac{\underset{lim}{n→∞}{a}_{n}}{\underset{lim}{n→∞}{b}_{n}}$即可求得其值.
解答 解:$\underset{lim}{n→∞}$(an+bn)+$\underset{lim}{n→∞}$(an-bn)=$\underset{lim}{n→∞}$2an=3,
∴$\underset{lim}{n→∞}$an=$\frac{3}{2}$,
$\underset{lim}{n→∞}$(an+bn)-$\underset{lim}{n→∞}$(an-bn)=$\underset{lim}{n→∞}$2bn=1,
∴$\underset{lim}{n→∞}$bn=$\frac{1}{2}$,
∴an和bn的极限都存在,
$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{b}_{n}}$=$\frac{\underset{lim}{n→∞}{a}_{n}}{\underset{lim}{n→∞}{b}_{n}}$=$\frac{\frac{3}{2}}{\frac{1}{2}}$=3,
∴$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{b}_{n}}$的值为3.
点评 本题求函数的极限及其基本运算,解题时注意进行合理转化,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若f1(-1)=f1(1),则f(-1)>f(1) | B. | 若f2(-1)=f2(1),则f(-1)>f(1) | ||
| C. | 若f2(1)=f1(-1),则f1(-1)<f1(1) | D. | 若f2(1)=f1(-1),则f2(-1)>f2(1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com