2£®ÎÒ¹ú¼ÓÈëWTOʱ£¬¸ù¾Ý´ï³ÉµÄЭÒ飬Èô¸ÉÄêÄÚij²úÆ·µÄ¹ØË°Ë°ÂÊt¡¢Êг¡¼Û¸ñx£¨µ¥Î»£ºÔª£©ÓëÊг¡¹©Ó¦Á¿PÖ®¼äÂú×ã¹ØÏµÊ½£ºP=2${\;}^{£¨l-kt£©£¨x-b£©^{2}}$£¬ÆäÖÐb£¬kΪÕý³£Êý£¬µ±t=0.75ʱ£¬P¹ØÓÚxµÄº¯ÊýµÄͼÏóÈçͼËùʾ£º
£¨1£©ÊÔÇób£¬kµÄÖµ£»
£¨2£©¼ÇÊг¡ÐèÇóÁ¿ÎªQ£¬Ëü½üËÆÂú×ãQ£¨x£©=2-x£¬µ±Ê±P=Q£¬Êг¡¼Û¸ñ³ÆÎªÊг¡Æ½ºâ¼Û¸ñ£¬µ±Êг¡Æ½ºâ¼Û¸ñ²»³¬¹ý4Ԫʱ£¬Çó˰ÂʵÄ×î´óÖµ£®

·ÖÎö £¨1£©¸ù¾ÝͼÏóÇó³ök¡¢bµÄÖµ£®
£¨2£©µ±p=qʱ£¬¿ÉµÃ2£¨1-t£©£¨x-5£©2=2-x£¬¿ÉÇóµÃt=1+$\frac{1}{x+\frac{25}{x}-10}$£¬ÓÉË«¹´º¯Êýf£¨x£©=x+$\frac{25}{x}$ÔÚ£¨0£¬4]Éϵ¥µ÷µÝ¼õ£¬¿ÉÖªµ±x=4ʱ£¬f£¨x£©ÓÐ×îСֵ£®

½â´ð ½â£º£¨1£©ÓÉͼ¿ÉÖª£¬t=0.75ʱÓÐ$\left\{\begin{array}{l}{{2}^{£¨1-0.75t£©£¨5-b£©^{2}=1}}\\{{2}^{£¨1-0.75t£©£¨7-b£©^{2}=7}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=5}\end{array}\right.$£»
£¨2£©µ±P=Qʱ£¬µÃ${2}^{£¨1-t£©£¨x-5£©^{2}}$=2-x£¬
½âµÃ£ºt=1+$\frac{x}{£¨x-5£©^{2}}$=1+$\frac{1}{x+\frac{25}{x}-10}$£¬
¶øf£¨x£©=x+$\frac{25}{x}$ÔÚ£¨0£¬4]Éϵ¥µ÷µÝ¼õ£¬
¡àµ±x=4ʱ£¬f£¨x£©ÓÐ×îСֵ$\frac{41}{4}$£¬
´Ëʱt=1+$\frac{1}{x+\frac{25}{x}-10}$£¬
È¡µÃ×î´óÖµ5£»
¹Êµ±x=4ʱ£¬¹ØË°Ë°ÂʵÄ×î´óֵΪ500%£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯ÊýÄ£Ð͵ÄÓ¦Ó㬿¼²éÁËÖ¸Êý·½³ÌµÄ½â·¨ºÍË«¹´º¯Êý×îÖµµÄÇ󷨣®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èô¹ØÓÚxµÄ²»µÈʽx2+|x-a|£¼2ÖÁÉÙÓÐÒ»¸öÕýÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ$£¨-2£¬\frac{9}{4}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Óɵ㣨2£¬2£©ÏòÔ²£¨x-3£©2+y2=1ÒýÇÐÏߣ¬ÔòÇÐÏ߶γ¤Îª2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈýÀâ×¶P-ABCµÄµ×ÃæABCÊDZ߳¤Îª1µÄÕýÈý½ÇÐΣ¬¶¥µãPµ½µ×ÃæµÄ¾àÀëΪ$\frac{{\sqrt{6}}}{2}$£¬µãP£¬A£¬B£¬C¾ùÔڰ뾶Ϊ1µÄͬһÇòÃæÉÏ£¬A£¬B£¬CΪ¶¨µã£¬Ôò¶¯µãPµÄ¹ì¼£ËùΧ³ÉµÄÆ½ÃæÇøÓòµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{6}¦Ð$B£®$\frac{1}{3}¦Ð$C£®$\frac{1}{2}¦Ð$D£®$\frac{5}{6}¦Ð$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÔ²C£ºx2+y2-4x-14y+45=0¼°µãQ£¨-2£¬3£©£¬
£¨1£©ÈôµãP£¨m£¬m+1£©ÔÚÔ²CÉÏ£¬ÇóPQµÄбÂÊ£»
£¨2£©ÈôµãMÊÇÔ²CÉÏÈÎÒâÒ»µã£¬Çó|MQ|µÄ×î´óÖµ¡¢×îСֵ£»
£¨3£©ÈôN£¨a£¬b£©ÔÚÔ²CÉÏ£¬Çóz=$\frac{b-3}{a+2}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=sin2x£¬Ôò$f'£¨{\frac{¦Ð}{6}}£©$=£¨¡¡¡¡£©
A£®1B£®$\sqrt{3}$C£®$\frac{1}{2}$D£®$\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®º¯Êýy=tan£¨2x-$\frac{¦Ð}{4}$£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®{x|x¡Ù$\frac{k¦Ð}{2}$+$\frac{3¦Ð}{8}$£¬k¡ÊZ}B£®{x|x¡Ù$\frac{k¦Ð}{2}$+$\frac{3¦Ð}{4}$£¬k¡ÊZ}C£®{x|x¡Ùk¦Ð+$\frac{3¦Ð}{8}$£¬k¡ÊZ}D£®{x|x¡Ùk¦Ð+$\frac{3¦Ð}{4}$£¬k¡ÊZ}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÈý½ÇÐÎABCÖУ¬¡ÏA£¬¡ÏB£¬¡ÏC·Ö±ðÊÇÈý½ÇÐεÄÄڽǣ®
£¨1£©ÇóÖ¤£ºtanA+tanB+tanC=tanA•tanB•tanC
£¨2£©ÇóÖ¤£ºtan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{C}{2}$tan$\frac{A}{2}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔËÐÐÁ½´ÎÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôµÚÒ»´ÎÓëµÚ¶þ´ÎÊäÈëµÄaµÄÖµÖ®ºÍΪ0£¬ÔòµÚÒ»´ÎÓëµÚ¶þ´ÎÊä³öµÄaµÄÖµÖ®ºÍΪ£¨¡¡¡¡£©
A£®0B£®1C£®0»ò1D£®-1»ò1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸